Communication
ISSN (Print) 0253-2964 | (Online) 1229-5949
BULLETIN OF THE
KOREAN CHEMICAL SOCIETY
Scheme 3. Synthesis of C*G and GC* PNA dimers. Reagent and
conditions: (i) 9a–b, NMM, ClCO2iBu, CH2Cl2, 11, 60 min,
Scheme 1. Synthesis of C* and G PNA monomer. Reagent and
conditions: (i) chloroacetic acid, 22 h, 96%; (ii) HCl, MeOH,
reflux 3 h, 98%; (iii) TEA, MmtCl, CH2Cl2 65%; (iv) 7a or 7b,
EDC, HOBt, CH2Cl2, 6, 22 h, 91%; (v) 8a or 8b, 1 M LiOH, 1,4-
dioxane, 6 h, 95%.
91%; (ii) 20% piperidine, CH2Cl2, 60 min, 55%; (iii) C*(Boc) acid
diBoc)
or G(OBn,
acid, EDC, HOBt, CH2Cl2, 13a–b, 2 h, 94%;
(iv) 14a–b, 1 M LiOH, 1,4-dioxane, TFA/CH2Cl2, 92%.
improvement in the yield, and finally the desired C*G and
GC* PNA dimers could be synthesized effectively.
Scheme 2. Synthesis of PNA unit. Reagent and conditions:
(i) (Boc)2O, CH2Cl2, 22 h, 82%; (ii) ethyl bromoacetate, TEA,
CH3CN, 2 h, 55%; (iii) FmocCl, TEA, CH2Cl2, 30 min, 82%;
(iv) TFA/CH2Cl2, 1:1, 4 h, 99%.
Supporting Information. Additional supporting informa-
tion is available in the online version of this article.
11 with PNA monomer 9a or 9b (Scheme 2). Although cou-
pling of 11 with PNA monomer 9a or 9b can avoid acyl
migration, the protection group of sec-amine of 11 should be
carefully chosen. Without sec-amine protection, during the
coupling reaction with PNA monomer, side products are gen-
erated because sec- and pri-amine are competing.7
In the literature, as a protecting group for sec-amine, a rela-
tively rare and expensive protection group such as Alloc or
Troc group is generally used.8 However, in our synthesis, the
fmoc group could be used as the sec-amine protecting group
of 10. The fmoc protection of sec-amine in 10 was successful,
and coupling between 11 and PNA monomer 9a or 9b
showed the best results in the reaction with isobutyl chlorofor-
mate (Scheme 33).9 After the fmoc group of 12 was removed,
C* or G base was introduced by EDC coupling to yield 14.
The ethyl ester of the C-terminal and the MMTr of the N-
terminal were sequentially removed, and finally C*G and
GC* PNA dimers were effectively synthesized.
References
1. P. E. Nielsen, M. Egholm, R. H. Berg, O. Buchardt, Science
1991, 254, 1497.
2. S. Siddiquee, K. Rovina, A. Azriah, Adv. Tech. Biol. Med.
2015, 3, 131.
3. O. R. Berger, L. Adler-Abramovich, M. Levy-Sakin, A. Grunw
ald, Y. Liebes-Peer, M. Bachar, L. Buzhansky, E. Mossou,
T. V. F. Orsyth, T. Schwartz, Y. Ebenstein, F. Frolow,
J. W. Shimon, F. Parolsky, E. Gazit, Nat. Nanotechnol. 2015,
10, 353.
4. A. H. El-Sagheer, T. Brown, Chem. Sci. 2014, 5, 253.
5. J. O. Lee, S. Chung, H. Y. Kim, H. J. Park, M. R. Kim. Peptide
nucleic acid derivatives with good cell penetration and strong
affinity for nucleic acid. U.S. Patent 8680253 B2, March 25, 2014.
6. S. A. Thomson, J. A. Josey, F. Cadilla, M. D. Gaul,
C. F. Hassman, M. J. Luzzio, A. J. Pipe, K. L. Reed,
D. J. Ricca, R. W. Wiethe, S. A. Noble, Tetrahedron 1995,
51, 6179.
7. A. Farese, S. Pairot, N. Patino, V. Ravily, R. Condom,
A. Aumelas, R. Guedj, Nucleosides Nucleotides 1997,
16, 1893.
8. G. Depecker, C. Schwergold, C. D. Giorgio, N. Pantino,
R. Condom, Tetrahedron Lett. 2001, 42, 8303.
9. C. Schwergold, G. Depecker, C. D. Giorgio, N. Pantino,
F. Jossinet, B. Ehresmann, R. Terreux, C. D. Bass,
R. Condom, Tetrahedron Lett. 2002, 58, 5675.
In conclusion, the synthesis of PNA dimer containing
modified cytosine required a different synthetic strategy
than the conventional method in order to minimize the acyl
migration and improve the yield of coupling process
between PNA monomers. The N-terminal protection using
MMTr was successful. Adding the second base later after
attaching the PNA unit 11 first led to a significant
Bull. Korean Chem. Soc. 2018, Vol. 39, 10–11
© 2017 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
11