Organic Letters
Letter
(12) In this work, application of the ethylene acetal was not feasible, as
preliminary investigations of path B showed that ethylene acetal cleavage
to give 5 was unsuccessful because of competing side reactions.
(13) For recent reviews, see: (a) Chauhan, P.; Mahajan, S.; Enders, D.
Chem. Rev. 2014, 114, 8807. (b) Heravi, M. M.; Hajiabbasi, P. Mol.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Diversity 2014, 18, 411. (c) Enders, D.; Luttgen, K.; Narine, A. A.
Experimental procedures, spectroscopic data, 1H and 13
NMR spectra, and HPLC traces (PDF)
C
̈
Synthesis 2007, 959.
(14) de March, P.; Escoda, M.; Figueredo, M.; Font, J.; García-García,
E.; Rodríguez, S. Tetrahedron: Asymmetry 2000, 11, 4473.
(15) Absolute configurations were assigned after oxidation of (+)-8
and comparison of specific rotation and chiral HPLC data with those for
(+)-7 from organocatalytic sulfa-Michael addition.
(16) For kinetic resolution of the analogous ethylene acetal,10 ee values
of 81% for the alcohol and 95% for the acetate were obtained.
(17) Sun, J.; Dong, Y.; Cao, L.; Wang, X.; Wang, S.; Hu, Y. J. Org. Chem.
2004, 69, 8932.
Accession Codes
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.
(18) Rana, N. K.; Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75,
2089.
(19) Greenaway, K.; Dambruoso, P.; Ferrali, A.; Hazelwood, A. J.;
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Sladojevich, F.; Dixon, D. J. Synthesis 2011, 1880.
(20) Vakulya, B.; Varga, S.; Csam
1967.
́ ́
pai, A.; Soos, T. Org. Lett. 2005, 7,
(21) Rautschek, J.; Metz, P. Heterocycles 2017, 95, 1106.
Notes
(22) Hazlet, S. E.; Brotherton, R. J. J. Org. Chem. 1962, 27, 3253.
(23) Sinhababu, A. K.; Borchardt, R. T. J. Org. Chem. 1983, 48, 2356.
(24) Olefin 16 has been previously reported but not yet characterized.
See: Reddy, R.; Naga, C.; Arumugam, S. WO 2013072830 A1, 2013.
(25) Krasovskiy, A.; Kopp, F.; Knochel, P. Angew. Chem., Int. Ed. 2006,
45, 497; Angew. Chem. 2006, 118, 511.
(26) For related intramolecular nitrone and nitrile oxide cyclo-
additions, see ref 5 and: (a) Endoma-Arias, M. A. A.; Hudlicky, J. R.;
Simionescu, R.; Hudlicky, T. Adv. Synth. Catal. 2014, 356, 333.
(b) Parsons, P. J.; Penkett, C. S.; Shell, A. J. Chem. Rev. 1996, 96, 195.
(c) Chandler, M.; Parsons, P. J. J. Chem. Soc., Chem. Commun. 1984, 322.
(27) It is assumed that the more stable (Z)-nitrone is present and no
conversion takes place at room temperature. See: Aurich, H. G.;
Franzke, M.; Kesselheim, H. P. Tetrahedron 1992, 48, 663.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Deutsche Forschungsgemein-
schaft (ME 776/22-1) and the Graduate Academy of TU
Dresden funded by the Excellence Initiative of the German
Federal and State Governments (scholarship to J.R.).
REFERENCES
■
(1) WHO Model List of Essential Medicines, 20th List (March 2017);
(2) Robinson, R.; Gulland, J. M. Mem. Proc. - Manchester Lit. Philos. Soc.
1925, 69, 79.
(3) For recent reviews, see: (a) Reed, J. W.; Hudlicky, T. Acc. Chem.
Res. 2015, 48, 674. (b) Rinner, U.; Hudlicky, T. Top. Curr. Chem. 2012,
309, 33. (c) Chida, N. Top. Curr. Chem. 2010, 299, 1.
(4) For total and formal syntheses of morphine and codeine since
2015, see: (a) Li, Q.; Zhang, H. Chem. - Eur. J. 2015, 21, 16379.
(b) Rycek, L.; Hayward, J. J.; Latif, M. A.; Tanko, J.; Simionescu, R.;
(28) Rastelli, A.; Gandolfi, R.; Amade,
2000, 36, 151.
(29) For example, see: (a) Aurich, H. G.; Geiger, M.; Gentes, C.;
̀
M. S. Adv. Quantum Chem.
Koster, H. Tetrahedron Lett. 1996, 37, 841. (b) Ishikawa, T.; Kudo, T.;
̈
Shigemori, K.; Saito, S. J. Am. Chem. Soc. 2000, 122, 7633. (c) Shing, T.
K. M.; Wong, W. F.; Ikeno, T.; Yamada, T. Org. Lett. 2007, 9, 207.
(d) Majer, R.; Konechnaya, O.; Delso, I.; Tejero, T.; Attanasi, O. A.;
Santeusanio, S.; Merino, P. Org. Biomol. Chem. 2014, 12, 8888.
(e) Xiang, J.; Zhu, T.; Dang, Q.; Bai, X. Chem. Heterocycl. Compd. 2016,
52, 601.
(30) Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel, Y.;
Vanherck, J.-C.; Marko, I. E. Tetrahedron 2003, 59, 8989.
́
(31) While the relative configuration of 24b could be assigned by NOE
experiments, 24a was subjected to a silylation/oxidation/elimination
sequence in order to unambiguously determine the β-OH configuration
Hudlicky, T. J. Org. Chem. 2016, 81, 10930. (c) Chu, S.; Munster, N.;
̈
Balan, T.; Smith, M. D. Angew. Chem., Int. Ed. 2016, 55, 14306; Angew.
Chem. 2016, 128, 14518. (d) Umihara, M.; Yokoshima, S.; Inoue, M.;
Fukuyama, T. Chem. - Eur. J. 2017, 23, 6993. (e) Park, K. H.; Chen, R.;
Chen, D. Y.-K. Chem. Sci. 2017, 8, 7031.
(5) Erhard, T.; Ehrlich, G.; Metz, P. Angew. Chem., Int. Ed. 2011, 50,
3892; Angew. Chem. 2011, 123, 3979.
(6) (a) de March, P.; Escoda, M.; Figueredo, M.; Font, J.; Alvarez-
Larena, A.; Piniella, J. F. J. Org. Chem. 1997, 62, 7781. (b) Fresneda, M.
́ ́
A.; Alibes, R.; Bayon, P.; Figueredo, M. Eur. J. Org. Chem. 2016, 3568.
(32) Ravikumar, K. S.; Beg
Lett. 1998, 39, 3141.
́ ́
ue, J.-P.; Bonnet-Delpon, D. Tetrahedron
(33) Matsuo, J.; Kozai, T.; Ishibashi, H. Org. Lett. 2006, 8, 6095.
́
(7) (a) O’Byrne, A.; Murray, C.; Keegan, D.; Palacio, C.; Evans, P.;
Morgan, B. S. Org. Biomol. Chem. 2010, 8, 539. (b) O’Byrne, A.; O’Reilly,
S.; Tighe, C.; Evans, P.; Ciuffini, L.; Santoro, M. G. Tetrahedron Lett.
2012, 53, 5936.
(8) Morgan, B. S.; Hoenner, D.; Evans, P.; Roberts, S. M. Tetrahedron:
Asymmetry 2004, 15, 2807.
(9) Alibes
Tetrahedron: Asymmetry 2004, 15, 1151.
́
(10) Bayon, P.; Marjanet, G.; Toribio, G.; Alibes, R.; de March, P.;
́
, R.; de March, P.; Figueredo, M.; Font, J.; Marjanet, G.
́
Figueredo, M.; Font, J. J. Org. Chem. 2008, 73, 3486.
(11) de March, P.; Escoda, M.; Figueredo, M.; Font, J.; Medrano, J. An.
Quim. Int. Ed. 1997, 93, 81.
D
Org. Lett. XXXX, XXX, XXX−XXX