ACS Medicinal Chemistry Letters
Author Contributions
Page 4 of 5
1
2
#These authors contributed equally.
3
4
5
6
ACKNOWLEDGMENT
The Montreal group thanks NSERC for financial assistance.
Funding for A.L.E. was provided through a grant from the Chao
Family Comprehensive Cancer Center Anti-Cancer Challenge.
7
8
9
REFERENCES
(1) Hannun, Y. A.; Obeid, L. M. Sphingolipids and their metabolism
in physiology and disease. Nat. Rev. Mol. Cell. Biol. 2018, 19, 175–
191.
(2) Ogretmen, B. Sphingolipid metabolism in cancer signalling and
therapy Nature Rev. Cancer 2018, 18, 33–50.
3
5
20
15
10
5
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) Liao, J. Y., Tao, J. H., Lin, G. Q.; Liu, D. G. Chemistry and
biology of sphingolipids Tetrahedron 2005, 61, 4715–4733.
(4) Welsch, C. A., Roth, L. W., Goetschy, J. F.; Movva, N. R.
Genetic, biochemical, and transcriptional responses of Saccharomyces
cerevisiae to the novel immunomodulator FTY720 largely mimic
those of the natural sphingolipid phytosphingosine J. Biol. Chem.
2004, 279, 36720–36731.
(5) Guenther, G. G., Peralta, E. R., Rosales, K. R., Wong, S. Y.,
Siskind, L. J.; Edinger, A. L. Ceramide starves cells to death by
downregulating nutrient transporter proteins Proc. Natl. Acad. Sci.
U.S.A. 2008, 105, 17402–17407.
(6) Finicle, B.T., Ramirez, M. U., Liu, G., Selwan, E.M.,
McCracken, A.N., Yu, J., Joo, Y., Nguyen, J., Ou, K., Roy, S.G.,
Mendoza, V.D., Corrales, D.V.; Edinger, A.L. Sphingolipids inhibit
endosomal recycling of nutrient transporters by inactivating ARF6 J.
Cell. Sci. 2018, 131, 10.1242/jcs213314.
(7) McCracken, A. N., and Edinger, A. L. Nutrient transporters: the
Achilles' heel of anabolism Trends Endocrinol. Metab. 2013, 24, 200–
208.
(8) Selwan, E. M., Finicle, B. T., Kim, S. M.; Edinger, A. L.
Attacking the supply wagons to starve cancer cells to death FEBS
Lett. 2016, 590, 885–907.
(9) Vander Heiden, M. G.; DeBerardinis, R. J. Understanding the
Intersections between Metabolism and Cancer Biology Cell 2017 168,
657-669.
(10) Romero Rosales, K., Singh, G., Wu, K., Chen, J., Janes, M. R.,
Lilly, M. B., Peralta, E. R., Siskind, L. J., Bennett, M. J., Fruman, D.
A.; Edinger, A. L. Sphingolipid-based drugs selectively kill cancer
cells by down-regulating nutrient transporter proteins Biochem. J.
2011, 439, 299–311.
(11) Kim, S. M., Roy, S. G., Chen, B., Nguyen, T. M., McMonigle,
R. J., McCracken, A. N., Zhang, Y., Kofuji, S., Hou, J., Selwan, E.,
Finicle, B. T., Nguyen, T. T., Ravi, A., Ramirez, M. U., Wiher, T.,
Guenther, G. G., Kono, M., Sasaki, A. T., Weisman, L. S., Potma, E.
O., Tromberg, B. J., Edwards, R. A., Hanessian, S.; Edinger, A. L.
Targeting cancer metabolism by simultaneously disrupting parallel
nutrient access pathways J. Clin. Invest. 2016, 126, 4088–4102.
(12) Finicle, B. T., Jayashankar, V.; Edinger, A. L. Nutrient
scavenging in cancer Nature Rev. Cancer 2018, 18, 619–633.
(13) Neviani, P., Santhanam, R., Oaks, J. J., Eiring, A. M., Notari,
M., Blaser, B. W., Liu, S., Trotta, R., Muthusamy, N., Gambacorti-
Passerini, C., Druker, B. J., Cortes, J., Marcucci, G., Chen, C. S.,
Verrills, N. M., Roy, D. C., Caligiuri, M. A., Bloomfield, C. D., Byrd,
J. C.; Perrotti, D. FTY720, a new alternative for treating blast crisis
chronic myelogenous leukemia and Philadelphia chromosome-
positive acute lymphocytic leukemia J. Clin. Invest. 2007, 117, 2408–
2421.
(14) Azuma, H., Takahara, S., Horie, S., Muto, S., Otsuki, Y.;
Katsuoka, Y. Induction of apoptosis in human bladder cancer cells in
vitro and in vivo caused by FTY720 treatment J. Urol. 2003, 169,
2372–2377.
(15) Azuma, H., Takahara, S., Ichimaru, N., Wang, J. D., Itoh, Y.,
Otsuki, Y., Morimoto, J., Fukui, R., Hoshiga, M., Ishihara, T.,
Nonomura, N., Suzuki, S., Okuyama, A.; Katsuoka, Y. Marked
0
Colorectal Breast Prostate Pancreas
Figure 4. Compound 5 has a lower IC50 than compound 3 across
human cancer cell lines.
In conclusion, we have established a novel series of synthetic
sphingolipids related to a lead compound 3, with appended
1,2-pyridazine units bearing substituents at the 3,6-positions
via a 3-carbon ether linker. While a combination of
substituents were tolerated in maintaining cytotoxicity against
FL5.12 cells, inclusion of a methyl and a pyrimidinyl group
proved to be particularly beneficial in rendering high
nanomolar cytotoxicity for the first time in this series.
Extension of these activities to selected human cancer cell
lines at the nanomolar level augurs well for the development
of well-tolerated cancer therapies that target multiple nutrient
import pathways to starve cancer cells to death. Studies are in
progress to identify the specific cellular targets of these
structurally related natural and synthetic sphingolipids. The
3,6-disubstituted 1,2-pyridazines developed here will be
invaluable in these efforts to pinpoint the protein targets of the
anti-proliferative compound 3 and its analogs.
ASSOCIATED CONTENT
The Supporting Information contains the biological and chemical
methods and chemical experimental procedures and is available
AUTHOR INFORMATION
Corresponding Authors
*E-mail: stephen.hanessian@umontreal.ca.
*E-mail: aedinger@uci.edu.
prevention of tumor growth and metastasis by
a
novel
ACS Paragon Plus Environment