Unsymmetrical Ferrocenylethylamine-Derived
Monophosphoramidites: Highly Efficient Chiral
Ligands for Rh-Catalyzed Enantioselective
Hydrogenation of Enamides and r-Dehydroamino
Acid Derivatives
sibility of a range of diverse ligand structures, and their often
lower cost when compared to bidentate ligands. Following the
2
a
2b
pioneering studies from the groups of Pringle, Reetz, and
2c
2d
2e
Feringa and more recently Chan and Zhou, a large number
of chiral monodentate phosphonite, phosphite, and phosphora-
midite ligands have been found to induce excellent enantiose-
lectivities in rhodium-catalyzed asymmetric hydrogenation
reactions, comparable to or exceeding those obtained with
Qing-Heng Zeng,†,‡ Xiang-Ping Hu, Zheng-Chao Duan,
†
†,‡
†
,†
3
Xin-Miao Liang, and Zhuo Zheng*
bidentate ligands. Among the chiral monodentate phosphorus
ligands developed to date, MonoPhos (1), the simplest member
Dalian Institute of Chemical Physics, Chinese Academy of
Sciences, 457 Zhongshan Road, Dalian 116023, China, and
Graduate School of the Chinese Academy of Sciences,
Beijing 100039, China
of the monodentate phosphoramidites based on axially chiral
4
2
,2′-binaphthol, has held an especially important position. In
addition to exhibiting high efficiency in the rhodium-catalyzed
hydrogenation of R-dehydroamino acids and esters, aromatic
enamides, and itaconic acid derivatives, the MonoPhos (1) ligand
architecture can be readily modified to optimize the hydrogena-
tion of substrates that do not give good results with Monophos
itself. Structural modification of the MonoPhos backbone can
be carried out either by introducing substituents onto the
binaphthyl moiety or by replacing the dimethylamino group with
other C2-symmetric amines. However, introduction of substit-
uents onto the binaphthyl moiety of MonoPhos has usually
resulted in diminished enantioselectivities and reaction rates.
In contrast, replacement of the dimethylamino group with other
C2-symmetrical amines has proven to be more successful. For
example, in the Rh-catalyzed enantioselective hydrogenation of
enamides, good enantioselectivity (96% ee) was obtained with
ReceiVed September 13, 2005
(2) (a) Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett, D. J.;
Martorell, A.; Orpen, A. G.; Pringle, P. G. Chem. Commun. 2000, 961. (b)
Reetz, M. T.; Mehler, G. Angew. Chem., Int. Ed. 2000, 39, 3889. (c) van
den Berg, M.; Minnaard, A. J.; Schudde, E. P.; van Esch, J.; de Vries, A.
H. M.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2000, 122, 11539.
(
2
d) Jia, X.; Li, X.; Xu, L.; Shi, Q.; Yao, X.; Chan, A. S. C. J. Org. Chem.
003, 68, 4539. (e) Hu, A.-G.; Fu, Y.; Xie, J.-H.; Zhou, H.; Wang, L.-X.;
A new family of unsymmetrical ferrocenylethylamine-
derived monophosphoramidites were synthesized and suc-
cessfully applied in the Rh-catalyzed enantioselective hy-
drogenation of a range of enamides and R-dehydroamino acid
esters, and ee values of up to 99.5% were obtained for both
types of substrate. These results suggest that unsymmetrical
amine-derived monophosphoramidites can also exhibit excel-
lent enantioselectivity for a broad range of substrates,
comparable to or higher than those of the most efficient
symmetrical amine-derived monophosphoramidites reported
thus far.
Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348.
(3) For reviews of asymmetric hydrogenation with monophosphorus
ligands, see: (a) Lagasse, F.; Kagan, H. B. Chem. Pharm. Bull. 2000, 48,
3
15. (b) Komarov, I. V.; B o¨ rner, A. Angew. Chem., Int. Ed. 2001, 40, 1197.
(c) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer,
M. Adv. Synth. Catal. 2003, 345, 103. (d) Tang, W.; Zhang, X. Chem. Rev.
2
003, 103, 3029. (e) Jerphagnon, T.; Renaud, J.-L.; Bruneau, C. Tetrahe-
dron: Asymmetry 2004, 15, 2101. (f) Guo, H.; Ding, K. Chin. Sci. Bull.
2004, 49, 2003. For some recent examples of asymmetric hydrogenation
with monophosphorus ligands, see: (g) Fu, Y.; Guo, X.-X.; Zhu, S.-F.;
Hu, A.-G.; Xie, J.-H.; Zhou, Q.-L. J. Org. Chem. 2004, 69, 4648. (h) Fu,
Y.; Hou, G.-H.; Xie, J.-H.; Xing, L.; Wang, L.-X.; Zhou, Q.-L. J. Org.
Chem. 2004, 69, 8157. (i) Wu, S.; Zhang, W.; Zhang, Z.; Zhang, X. Org.
Lett. 2004, 6, 3565. (j) Botman, P. N. M.; Amore, A.; van Heerbeek, R.;
Back, J. W.; Hiemstra, H.; Reek, J. N. H.; van Maarseveen, J. H.
Tetrahedron Lett. 2004, 45, 5999. (k) Jerphagnon, T.; Renaud, J.-L.;
Demonchaux, P.; Ferreira, A.; Bruneau, C. AdV. Synth. Catal. 2004, 346,
33. (l) Reetz, M. T.; Li, X. Tetrahedron 2004, 60, 9709. (m) Huang, H.;
Zheng, Z.; Luo, H.; Bai, C.; Hu, X.; Chen, H. J. Org. Chem. 2004, 69,
Asymmetric hydrogenations catalyzed by chiral metal-ligand
complexes are among the most powerful tools for obtaining
1
enantiomerically enriched compounds. Despite the encouraging
2
2
2
355. (n) Reetz, M. T.; Ma, J.-A.; Goddard, R. Angew. Chem., Int. Ed.
005, 44, 412. (o) Reetz, M. T.; Li, X. Angew. Chem., Int. Ed. 2005, 44,
959. (p) Peng, H.-Y.; Lam, C.-K.; Mak, T. C. W.; Cai, Z.; Ma, W.-T.; Li,
performance of many bidentate P-chelate ligands, the past few
years have witnessed a renewed interest in the development of
chiral monodentate phosphorus-containing ligands for use in
rhodium-catalyzed asymmetric hydrogenation reactions. This
resurgence in monodentate ligands is due to the ready acces-
Y.-X.; Wong, H. N. C. J. Am. Chem. Soc. 2005, 127, 9603. (q) Reetz, M.
T.; Meiswinkel, A.; Mehler, G.; Angermund, K.; Graf, M.; Thiel, W.;
Mynott, R.; Blackmond, D. G. J. Am. Chem. Soc. 2005, 127, 10305. (r)
Liu, Y.; Ding, K. J. Am. Chem. Soc. 2005, 127, 10488. (s) Hoen, R.;
Boogers, J. A. F.; Bernsmann, H.; Minnaard, A. J.; Meetsma, A.;
Tiemersma-Wegman, T. D.; de Vries, J. G.; Feringa, B. L. Angew. Chem.,
Int. Ed. 2005, 44, 1896. (t) Panella, L.; Feringa, B. L.; de Vries, J. G.;
Minnaard, A. J. Org. Lett. 2005, 7, 4177.
†
Chinese Academy of Sciences.
Graduate School of the Chinese Academy of Sciences
‡
(1) For reviews, see: (a) Brown, J. M. In Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin,
Germany, 1999; Vol. 1, Chapter 5.1. (b) Ohkuma, T.; Kitamura, M.; Noyori,
R. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH:
New York, 2000; Chapter 1.
(4) van den Berg, M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.;
Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars,
C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A. F.; Henderickx, H. J.
W.; de Vries, J. G. AdV. Synth. Catal. 2003, 345, 308.
1
0.1021/jo051912s CCC: $33.50 © 2006 American Chemical Society
Published on Web 11/25/2005
J. Org. Chem. 2006, 71, 393-396
393