J. K. Lee, M.-J. Kim / Tetrahedron Letters 52 (2011) 499–501
501
Table 2
Seddon, K. R.; Sheldon, R. A. Org. Lett. 2000, 2, 4189–4191; (d) Schoefer, S. H.;
Kraftzik, N.; Wasserscheid, P.; Kragl, U. Chem. Commun. 2001, 425–426; (e)
Kim, K.-W.; Song, B.; Choi, M. Y.; Kim, M.-J. Org. Lett. 2001, 3, 1507–1509; (f)
Park, S.; Kazlauskas, R. J. Org. Chem. 2001, 66, 8395–8401; (g) Kim, M.-J.; Choi,
M. Y.; Lee, J. K.; Ahn, Y. J. Mol. Catal. B: Enzym. 2003, 26, 115–118.
3. (a) Macfarlane, D. R.; Forsyth, M’.; Howlett, R. C.; Pringle, J. M.; Sun, J.; Annat,
G.; Neil, W.; Izgorodina, E. I. Acc. Chem. Res. 2007, 40, 1165–1173; (b) Fernicola,
A.; Scrosati, B.; Ohno, H. Ionics 2006, 12, 95–102.
Reuse of palladium nanoparticles on SWNTs in IL
Pd nanoparticles (6 mol%)
H2 (1 atm)
O
OH
SWNT (5mg)
[BMIM][PF 6] (1 ml)
r.t. 24h
4. (a) Matsumoto, H.; Matsuda, T.; Tsuda, T.; Hagiwara, R.; Ito, Y.; Miyazaki, Y.
Chem. Lett. 2001, 26–27; (b) Wang, P.; Zakeeruddin, S. M.; Moser, J.-E.;
Humphry-Baker, R.; Grätzel, M. J. Am. Chem. Soc. 2004, 126, 7164–7165; (c)
Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. Chem. Mater.
2004, 16, 2694–2696; (d) Ito, S.; Zakeeruddin, S. M.; Humphry-Baker, R.; Liska,
P.; Charvet, R.; Comte, P.; Nazeeruddin, M. K.; Péchy, P.; Takata, M.; Miura, H.;
Uchida, S.; Grätzel, M. Adv. Mater. 2006, 18, 1202–1205; (e) Mohmeyer, N.;
Kuang, D.; Wang, P.; Schmidt, H.-W.; Zakeeruddin, S. M.; Grätzel, M. J. Mater.
Chem. 2006, 16, 2978–2982; (f) Papageorgiou, N.; Athanassov, Y.; Armand, M.;
Bonhôte, P.; Pettersson, H.; Azam, A.; Grätzel, M. J. Electrochem. Soc. 1996, 143,
3099–3108; (g) Matsui, H.; Okada, K.; Kawashima, T.; Ezure, T.; Tanabe, N.;
Kawano, R.; Watanabe, M. J. Photochem. Photobiol., A 2004, 164, 129–135.
5. Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Texieira, S. R.; Dupont, J. Chem.
Eur. J. 2003, 9, 3263–3969.
Runa
1
99
2
99
3
99
4
99
5
99
6
99
7
99
8
99
9
99
10
99
Yieldb (%)
a
The first run was carried out with fresh Pd nanoparticles on SWNTs and the
second to tenth runs were done with recovered Pd nanoparticles on SWNTs.
The yields were determined by 1H NMR.
b
3. Conclusion
6. (a) Hamill, N. A.; Hardacre, C.; MaMath, S. E. J. Green Chem. 2002, 4, 139–142;
(b) Calo, V.; Nacci, A.; Momopoli, A.; Laera, S.; Cioffi, N. J. Org. Chem. 2003, 68,
2929–2933; (c) Calo, V.; Nacci, A.; Momopoli, A.; Detomaso, A.; Iliade, P.
Organometallics 2003, 22, 4193–4197.
7. Huang, J.; Jiang, T.; Han, B.; Gao, H.; Chang, Y.; Zhao, G.; Wu, W. Chem. Commun.
2003, 1654–1655.
8. Chun, Y. S.; Shin, J. Y.; Song, C. E.; Lee, S. G. Chem. Commun. 2008, 942–944.
9. (a) Che, G.; Lakshmi, B. B.; Martin, C. R.; Fisher, E. R. Langmuir 1999, 15, 750–
758; (b) Xue, B.; Chen, P.; Hong, Q.; Lin, J.; Tan, K. L. J. Mater. Chem. 2001, 11,
2378–2381; (c) Ebbesen, T. W.; Hiura, H.; Bisher, M. E.; Treacy, M. M. J.;
Shreeve-Keyer, J. L.; Haushalter, R. C. Adv. Mater. 1996, 8, 155–157; (d) Ye, X. R.;
Lin, Y.; Wai, C. M. Chem. Commun. 2003, 642–643.
In conclusion, this work has demonstrated that SWNTs could
serve as supporting materials for immobilization of palladium
nanoparticles in IL. The palladium nanoparticles on SWNT in IL
were very reactive and stable for hydrogenation of aryl ketones.
We believe that SWNTs are particularly promising as the support-
ers for immobilization of other metal nanoparticles or of biomole-
cules. Further studies on the immobilization on SWNTs in IL will
expand the scope of the utilization of various catalysts for organic
synthesis.
10. Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.;
Aida, T. Science 2003, 300, 2072–2074.
11. Liu, B. C.; Lyu, S. C.; Jung, S. J.; Kang, H. J.; Yang, C.-W.; Park, J. W.; Park, C. Y.;
Lee, C. J. Chem. Phys. Lett. 2003, 383, 104–108.
Acknowledgment
This work was supported by the National Research Foundation
of Korea (grant numbers: KRF-2007-313-C00413 and KRF-2008-
314-C00203). We thank Professor Cheol Jin Lee in Korea University
for kindly providing the SWNTs.
12. The palladium nanoparticles on SWNTs were prepared in [BMIM][PF6]. The
SWNTs (5 mg) was grounded in IL (1 ml) for 30 min, and then Pd(II) acetate
(0.018 mmol) was dissolved in the solution. The Pd(II) acetate was in situ
reduced in IL with 1 atm of hydrogen for 5 min at room temperature. The aryl
ketone (0.3 mmol) was added to this solution under 1 atm of hydrogen at room
temperature. After the >99% completion of the reaction was checked by TLC,
the products were extracted with ethyl ether. The ethereal phase was
concentrated and analyzed by 1H NMR.
References and notes
13. Scanning Electron Microscopy and EDAX were recorded in a Hitachi S-4300
FEG. The palladium nanoparticles on SWNT samples were prepared by
removing IL after hydrogenation.
14. [Pd on activated carbon]/IL system was prepared by above method with using
activated carbon instead of SWNTs.
1. (a) Seddon, K. R. J. Chem. Technol. Biotechnol. 1977, 68, 351–356; (b) Welton, T.
Chem. Rev. 1999, 99, 2071–2083; (c) Wasserscheid, P.; Wilhelm, K. Angew.
Chem., Int. Ed. 2000, 39, 3772–3789.
2. (a) Carmichael, A. J.; Haddleton, D. M.; Bon, S. A. F.; Seddon, K. R. Chem.
Commun. 2000, 837–838; (b) Erbeldinger, M.; Meisano, A. J.; Russel, A.
Biotechnol. Prog. 2000, 16, 1131–1133; (c) Lau, R. M.; van Rantwijk, F.;