Organic Letters
Letter
suitable for further scale up, and 2.5 g (10.0 mmol) of 1m
delivered 2m in 77% isolated yield (entry 4).
AUTHOR INFORMATION
Corresponding Author
■
On the basis of previous work,17 the following reaction
mechanism is likely (Scheme 3). Following the oxidative
Notes
The authors declare no competing financial interest.
Scheme 3. Proposed Reaction Mechanism
ACKNOWLEDGMENTS
This work is supported by the Swiss National Science
Foundation (no. 155967).
■
REFERENCES
■
(1) (a) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
̈
(b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359. (c) Ilardi, E. A.;
Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832. (d) Gillis, E.
P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med.
Chem. 2015, 58, 8315.
(2) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57,
10257.
(3) (a) Fukuda, Y.; Furuta, H.; Kusama, Y.; Ebisu, H.; Oomori, Y.;
Terashima, S. J. Med. Chem. 1999, 42, 1448. (b) Blobaum, A. L.;
Uddin, M. J.; Felts, A. S.; Crews, B. C.; Rouzer, C. A.; Marnett, L. J.
ACS Med. Chem. Lett. 2013, 4, 486. (c) Uddin, M. J.; Crews, B. C.;
Huda, I.; Ghebreselasie, K.; Daniel, C. K.; Marnett, L. J. ACS Med.
Chem. Lett. 2014, 5, 446. (d) Trabbic, C. J.; Overmeyer, J. H.;
Alexander, E. M.; Crissman, E. J.; Kvale, H. M.; Smith, M. A.; Erhardt,
P. W.; Maltese, W. A. J. Med. Chem. 2015, 58, 2489.
(4) Muzalevskiy, V. M.; Shastin, A. V.; Balenkova, E. S.; Haufe, G.;
Nenajdenko, V. G. Synthesis 2009, 2009, 3905.
addition of the Pd(0) catalyst to the C−Cl bond of substrate
1b,18 ligand exchange leads to intermediate III. The desired
pathway proceeds with carboxylate-assisted concerted metal-
ation−deprotonation (CMD),19 forming palladacycle IV. Upon
C−C bond-forming reductive elimination, the catalyst is
regenerated and intermediate V readily tautomerizes to furnish
indole 2b. The observed imide side product 3b can be formed
via two distinct pathways. A simple nucleophilic substitution
with acetate anion at trifluoroacetimidoyl chloride 1b could
lead to intermediate VI. Alternatively, VI can be formed by
reductive elimination forming the C−O bond from complex
III. Experimental evidence suggests that both pathways are
operative for monosubstituted substrate 1b, with the catalytic
one dominating with certain ligands. Mumm rearrangement of
VI forms intermediate VII. In turn, the trifluoroacetyl group of
the mixed imide is substituted by acetate, leading to the
observed side product 3b.
In conclusion, we report convenient access to a range of
valuable (trifluoromethyl)indoles employing a Pd(0)-catalyzed
C(sp3)−H functionalization of trifluoroacetimidoyl chlorides. It
represents a complementary access to this class of compounds
avoiding the use of expensive electrophilic trifluoromethylating
reagents. Our study showcases the good potential of stable
trifluoroacetimidoyl chlorides as electrophilic partners for
C(sp3)−H functionalization reactions. Moreover, the reaction
operates efficiently at low catalyst loadings of 1 mol % of Pd
and is readily scalable to gram amounts.
(5) (a) Mu, X.; Chen, S.; Zhen, X.; Liu, G. Chem. - Eur. J. 2011, 17,
6039. (b) Chu, L.; Qing, F.-L. J. Am. Chem. Soc. 2012, 134, 1298.
(c) Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. Tetrahedron Lett. 2012, 53,
2005. (d) Fennewald, J. C.; Lipshutz, B. H. Green Chem. 2014, 16,
1097. (e) He, R.-Y.; Zeng, H.-T.; Huang, J.-M. Eur. J. Org. Chem. 2014,
2014, 4258. (f) Mormino, M. G.; Fier, P. S.; Hartwig, J. F. Org. Lett.
2014, 16, 1744. (g) Straathof, N. J. W.; Gemoets, H. P. L.; Wang, X.;
Schouten, J. C.; Hessel, V.; Noel, T. ChemSusChem 2014, 7, 1612.
̈
(6) (a) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.;
Sodeoka, M. Tetrahedron Lett. 2010, 51, 5947. (b) Wiehn, M. S.;
Vinogradova, E. V.; Togni, A. J. Fluorine Chem. 2010, 131, 951.
(c) Mejía, E.; Togni, A. ACS Catal. 2012, 2, 521. (d) Sodeoka, M.;
Miyazaki, A.; Shimizu, R.; Egami, H. Heterocycles 2012, 86, 979.
(7) (a) Xu, J.; Luo, D.-F.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Fu, Y.; Liu,
L. Chem. Commun. 2011, 47, 4300. (b) Cheng, Y.; Yuan, X.; Ma, J.; Yu,
S. Chem. - Eur. J. 2015, 21, 8355.
(8) (a) Jiang, H.; Wang, Y.; Wan, W.; Hao, J. Tetrahedron 2010, 66,
2746. (b) Usachev, B. I.; Obydennov, D. L.; Sosnovskikh, V. Y. J.
Fluorine Chem. 2012, 135, 278. (c) Shmatova, O. I.; Shevchenko, N.
E.; Nenajdenko, V. G. Eur. J. Org. Chem. 2015, 2015, 6479.
(9) (a) Kino, T.; Nagase, Y.; Horino, Y.; Yamakawa, T. J. Mol. Catal.
A: Chem. 2008, 282, 34. (b) Chen, Z.; Zhu, J.; Xie, H.; Li, S.; Wu, Y.;
Gong, Y. Synlett 2010, 2010, 1418. (c) Dong, S.-X.; Zhang, X.-G.; Liu,
Q.; Tang, R.-Y.; Zhong, P.; Li, J.-H. Synthesis 2010, 2010, 1521.
(d) Chen, Z.; Zhu, J.; Xie, H.; Li, S.; Wu, Y.; Gong, Y. Adv. Synth.
Catal. 2011, 353, 325. (e) Cao, L.; Shen, D.; Wei, J.; Chen, J.; Deng,
H.; Shao, M.; Shi, J.; Zhang, H.; Cao, W. Eur. J. Org. Chem. 2014,
2014, 2460. (f) Wang, Z.-x.; Zhang, T.-f.; Ma, Q.-w.; Ni, W. -g.
Synthesis 2014, 46, 3309. (g) Dong, X.; Hu, Y.; Xiao, T.; Zhou, L. RSC
Adv. 2015, 5, 39625. (h) Shen, D.; Han, J.; Chen, J.; Deng, H.; Shao,
M.; Zhang, H.; Cao, W. Org. Lett. 2015, 17, 3283. (i) Vitaku, E.; Smith,
D. T.; Njardarson, J. T. Angew. Chem., Int. Ed. 2016, 55, 2243.
(10) For some recent reviews on transition-metal-catalyzed C−H
functionalization, see: (a) De Sarkar, S.; Liu, W.; Kozhushkov, S. I.;
Ackermann, L. Adv. Synth. Catal. 2014, 356, 1461. (b) Saget, T.;
Cramer, N. Pure Appl. Chem. 2014, 86, 265. (c) Zheng, C.; You, S.-L.
RSC Adv. 2014, 4, 6173. (d) Daugulis, O.; Roane, J.; Tran, L. D. Acc.
Chem. Res. 2015, 48, 1053. (e) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang,
W. Chem. Rev. 2015, 115, 1622. (f) Hu, F.; Xia, Y.; Ma, C.; Zhang, Y.;
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and analytical and spectral data
for all new compounds (PDF)
C
Org. Lett. XXXX, XXX, XXX−XXX