Journal of the American Chemical Society
Page 4 of 9
ic cage 2 thus rendered straightforward the clean separation
of two physicochemically similar host-guest complexes.
(7) Metherell, A. J.; Ward, M. D. Chem. Sci. 2016, 7, 910.
(8) Ren, D.-H.; Qiu, D.; Pang, C.-Y.; Li, Z.; Gu, Z.-G. Chem. Commun.
015, 51, 788.
9) Sun, B.; Wang, M.; Lou, Z. C.; Huang, M. J.; Xu, C. L.; Li, X. H.;
Chen, L.-J.; Yu, Y. H.; Davis, G. L.; Xu, B. Q.; Yang, H.-B.; Li, X. P. J.
Am. Chem. Soc. 2015, 137, 1556.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
2
(
This study demonstrates that anion exchange is capable of
driving the transport of cationic cages between two liquid
phases. Such transport thus provides a new mechanism to
separate physicochemically similar cages and cargoes. Added
layers of complexity may be envisaged, involving the intro-
duction of further solvent layers and cages with varying sol-
vent preferences. This work thus adds to our understanding
of how supramolecular capsules may contribute to solving
(10) Wise, M. D.; Holstein, J. J.; Pattison, P.; Besnard, C.; Solari, E.;
Scopelliti, R.; Bricogne, G.; Severin, K. Chem. Sci. 2015, 6, 1004.
(
11) Schalley, C. A.; Lutzen, A.; Albrecht, M. Chem. Eur. J. 2004, 10,
1
072.
(
(
12) Cook, T. R.; Stang, P. J. Chem. Rev. 2015, 115, 7001.
13) Xu, L.; Wang, Y.-X.; Chen, L.-J.; Yang, H.-B. Chem. Soc. Rev. 2015,
4
8-50
practical separations problems.
Ultimately, supramolecu-
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
4
4, 2148.
lar capsules could provide an energy-efficient alternative to
(14) Wang, W.; Wang, Y.-X.; Yang, H.-B. Chem. Soc. Rev. 2016, 45,
2656.
(15) Hashim, M. I.; Hsu, C.-W.; Le, H. T. M.; Miljanić, O. Š. Synlett
5
1
thermal separations, with different cages selectively encap-
5
2-56
sulating hydrocarbons of different sizes,
in complimen-
2
(
2
016, 27, 1907.
16) Wang, Q.-Q.; Day, V. W.; Bowman-James, K. J. Am. Chem. Soc.
013, 135, 392.
tary fashion to the means by which different fractions are
separated by boiling point through distillation.
(17) Collins, M. S.; Carnes, M. E.; Nell, B. P.; Zakharov, L. N.; Johnson,
D. W. Nat. Commun. 2016, 7, 11052.
ASSOCIATED CONTENT
Supporting Information
(
(
18) Wu, N.-W.; Rebek, J. J. Am. Chem. Soc. 2016, 138, 7512.
19) Zhang, G.; Presly, O.; White, F.; Oppel, I. M.; Mastalerz, M.
Synthetic procedures and characterization for cages 1[SO4],
1[BF ], 2[SO ], [Me N]3, and related subcomponents, if appli-
Angew. Chem. Int. Ed. 2014, 53, 5126.
4
4
4
(20) Pandurangan, K.; Kitchen, J. A.; Blasco, S.; Boyle, E. M.;
Fitzpatrick, B.; Feeney, M.; Kruger, P. E.; Gunnlaugsson, T. Angew.
Chem. Int. Ed. 2015, 54, 4566.
cable. Synthetic procedures for ionic liquids [hmim][BF ] and
4
[emim][NTf2]. Guest uptake kinetics measured for 1-
(
21) Bruns, C. J.; Fujita, D.; Hoshino, M.; Sato, S.; Stoddart, J. F.;
Fujita, M. J. Am. Chem. Soc. 2014, 136, 12027.
22) Rizzuto, F. J.; Wu, W. Y.; Ronson, T. K.; Nitschke, J. R. Angew.
fluoroadamantane ⊂ 1[SO ] in water; 1-fluoroadamantane ⊂
4
1[BF ] in acetonitrile. Experimental details of transport cycle
4
(
represented in Figure 1; characterization of Figure 1a, 1c, and
Chem. Int. Ed. 2016, 55, 7958.
(23) Yi, S.; Brega, V.; Captain, B.; Kaifer, A. E. Chem. Commun. 2012,
48, 10295.
1e. Experimental details of separation represented in Figure 3;
characterization of 3a and 3b. (PDF)
(
24) Zhou, X.-P.; Wu, Y.; Li, D. J. Am. Chem. Soc. 2013, 135, 16062.
Video depicting transport in Figure 1a-c. (AVI)
(25) Custelcean, R. Chem. Soc. Rev. 2014, 43, 1813.
(
(
26) Evans, N. H.; Beer, P. D. Angew. Chem. Int. Ed. 2014, 53, 11716.
27) Freye, S.; Michel, R.; Stalke, D.; Pawliczek, M.; Frauendorf, H.;
This material is available free of charge via the Internet at
http://pubs.acs.org.
Clever, G. H. J. Am. Chem. Soc. 2013, 135, 8476.
(28) Kieffer, M.; Pilgrim, B. S.; Ronson, T. K.; Roberts, D. A.;
Aleksanyan, M.; Nitschke, J. R. J. Am. Chem. Soc. 2016, 138, 6813.
AUTHOR INFORMATION
(
29) Loffler, S.; Lubben, J.; Krause, L.; Stalke, D.; Dittrich, B.; Clever,
G. H. J. Am. Chem. Soc. 2015, 137, 1060.
30) Luo, D.; Zhou, X.-P.; Li, D. Inorg. Chem. 2015, 54, 10822.
Corresponding Author
(
E-mail: jrn34@cam.ac.uk
(31) Luo, D.; Zhou, X.-P.; Li, D. Angew. Chem. Int. Ed. 2015, 54, 6190.
(32) Nakamura, T.; Ube, H.; Miyake, R.; Shionoya, M. J. Am. Chem.
Soc. 2013, 135, 18790.
Notes
(
(
33) Samanta, D.; Mukherjee, P. S. Chem. Eur. J. 2014, 20, 12483.
34) Wu, J.-Y.; Zhong, M.-S.; Chiang, M.-H.; Bhattacharya, D.; Lee,
The authors declare no competing financial interests.
Y.-W.; Lai, L.-L. Chem. Eur. J. 2016, 22, 7238.
(35) Zhu, R.; Lübben, J.; Dittrich, B.; Clever, G. H. Angew. Chem. Int.
Ed. 2015, 54, 2796.
ACKNOWLEDGMENT
This work was supported by the European Research Council
(
36) Bolliger, J. L.; Ronson, T. K.; Ogawa, M.; Nitschke, J. R. J. Am.
(
259352). ABG also acknowledges the Cambridge Trusts for
Chem. Soc. 2014, 136, 14545.
Ph.D. funding.
(
(
37) Chifotides, H. T.; Dunbar, K. R. Acc. Chem. Res. 2013, 46, 894.
38) Yan, X.; Wang, M.; Cook, T. R.; Zhang, M.; Saha, M. L.; Zhou, Z.;
REFERENCES
Li, X.; Huang, F.; Stang, P. J. J. Am. Chem. Soc. 2016, 138, 4580.
(39) Forsyth, S. A.; Pringle, J. M.; MacFarlane, D. R. Aust. J. Chem.
(
1) Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward,
2004, 57, 113.
M. D. Nat. Chem. 2016, 8, 231.
(2) Frischmann, P. D.; Kunz, V.; Würthner, F. Angew. Chem. Int. Ed.
(
(
(
(
40) Hagiwara, R.; Ito, Y. J. Fluorine Chem. 2000, 105, 221.
41) Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508.
42) Herchl, R.; Waser, M. Tetrahedron 2014, 70, 1935.
43) Serguchev, Y. A.; Ponomarenko, M. V.; Ignat’ev, N. V. J. Fluorine
2
(
015, 54, 7285.
3) Ganss, A.; Belda, R.; Pitarch, J.; Goddard, R.; Garcia-Espana, E.;
Kubik, S. Org. Lett. 2015, 17, 5850.
4) Johnson, A. M.; Wiley, C. A.; Young, M. C.; Zhang, X.; Lyon, Y.;
Chem. 2016, 185, 1.
44) Grommet, A. B.; Bolliger, J. L.; Browne, C.; Nitschke, J. R. Angew.
Chem. Int. Ed. 2015, 54, 15100.
45) Freire, M. G.; Santos, L. M. N. B. F.; Fernandes, A. M.; Coutinho,
J. A. P.; Marrucho, I. M. Fluid Phase Equilib. 2007, 261, 449.
(
(
Julian, R. R.; Hooley, R. J. Angew. Chem. Int. Ed. 2015, 54, 5641.
(5) Kishi, N.; Li, Z.; Sei, Y.; Akita, M.; Yoza, K.; Siegel, J. S.;
Yoshizawa, M. Chem. Eur. J. 2013, 19, 6313.
(
(
6) Klein, C.; Gütz, C.; Bogner, M.; Topić, F.; Rissanen, K.; Lützen, A.
Angew. Chem. Int. Ed. 2014, 53, 3739.
4
ACS Paragon Plus Environment