C O M M U N I C A T I O N S
Direct photocleavage neighboring the mismatch is evident with
higher intensity than on the A strand. Piperidine treatment to reveal
alkylation also shows significant reaction at the G 3 bases to the 5′
side of the mismatch.
These results demonstrate that the bifunctional rhodium complex
1 yields site-selective alkylation of mismatch-containing DNA. This
preferential targeting of mismatched DNA by 1 at low concentra-
tions, where untethered organic mustards show little reaction,
renders these compounds useful tools for the covalent tagging of
mismatched DNA and, potentially, for new chemotherapeutic
design.
Acknowledgment. We are grateful to the NIH (GM33309) for
their financial support. We also thank the Deutsche Forschungs-
gemeinschaft for a postdoctoral fellowship (U.S.).
Supporting Information Available: Schemes outlining the syn-
thesis of conjugate 1 (PDF). This material is available free of charge
References
Figure 2. Autoradiogram of a denaturing gel to determine the site
specificity of DNA alkylation. Conditions: 5 µM duplex DNA AB and 2
µM metal complex in buffer (0.7 mM phosphate, 20 mM NaCl) at pH )
7, incubated for 1 h at 37 °C in the dark prior to subsequent irradiation
(HeCd laser, 442 nm, 1 h, 12.5 mW) and/or piperidine treatment (30 min
at 90 °C). A+G and C+T, Maxam-Gilbert sequencing reactions. Lanes 1
and 2, buffer alone. Lanes 3-6, conjugate 1. Lanes 7 and 8, [Rh(bpy)2-
(chrysi)]3+. Lanes 9 and 10: melphalan (5 and 50 µM). Arrow: preferential
site of alkylation. *: position of the mismatch.
(1) Wood, R. D. Annu. ReV. Biochem. 1996, 65, 135-167.
(2) Hoeijmakers, J. H. J. Nature 2001, 411, 366-374.
(3) Scha¨rer, O. D. Angew. Chem., Int. Ed. 2003, 42, 2946-2974.
(4) Bu¨rmeyer, A. B.; Deschenes, S. M.; Baker, S. M.; Liskay, R. M. Annu.
ReV. Genet. 1999, 33, 533-564.
(5) Jiricny, J.; Nystro¨m-Lahti, M. Curr. Opin. Genet. DeV. 2000, 10, 157-
161.
(6) Jackson, B. A.; Barton, J. K. J. Am. Chem. Soc. 1997, 119, 12986-12987.
(7) Jackson, B. A.; Alekseyev, V. Y.; Barton, J. K. Biochemistry 1999, 38,
4655-4662.
(8) Jackson, B. A.; Barton, J. K. Biochemistry 2000, 39, 6176-6182.
(9) Junicke, H.; Hart, J. R.; Kisko, J. L.; Glebov, O.; Kirsch, I. R.; Barton, J.
K. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3737-3742.
(10) Ru¨ba, E.; Hart, J. R.; Barton, J. K. Inorg. Chem., published online May
depurination associated with N-alkylation12 were exploited. Figure
2 shows autoradiography after denaturing PAGE of 5′-32P-labeled
AB (5 µM) following incubation with 2 µM 1 for 1 h with or
without subsequent piperidine treatment and/or irradiation to
promote direct strand cleavage. Control samples contained either
buffer alone, untethered [Rh(bpy)2(chrysi)]3+, or melphalan, an
aniline mustard.
(11) Kielkopf, C. L.; Erkkila, K. E.; Hudson, B. P.; Barton, J. K.; Rees, D. C.
Nat. Struct. Biol. 2000, 7, 117-121.
(12) Kohn, K. W.; Hartley, J. A.; Mattes, W. B. Nucleic Acid Res. 1987, 15,
10531-10549.
(13) Hartley, J. A.; Gibson, N. W.; Kohn, K. W.; Mattes, W. B. Cancer Res.
1986, 46, 1943-1947.
(14) Mattes, W. B.; Hartley, J. A.; Kohn, K. W. Nucleic Acid Res. 1986, 14,
2971-2987.
The formation of a slow-moving covalent adduct above the parent
band is clearly visible after incubation with conjugate 1 (lanes 3-6).
Interestingly, incubation with melphalan alone at about the same
concentration (5 µM, lane 9) does not yield a resolved adduct, and
higher concentrations (50 µM, lane 10) lead to nonspecific
alkylation of the guanines. Subsequent treatment with piperidine
then reveals the site of alkylation.12 The primary alkylation site on
the labeled strand is at the G four bases away from the central CC
mismatch (lanes 4 and 6). Note that some damage, although of
lower intensity, is visible also at the G directly adjacent to the
mismatch. The preferential alkylation at the distal G is not surprising
given the length of the tether and the likely shielding of the proximal
site by the ancillary ligands of 1.23 Direct photocleavage, marking
the site of Rh-chrysi binding, occurs with still lower intensity at
the 5′-G neighboring the CC mismatch. It is noteworthy that
quantitation of these bands shows that the combined effects of
photocleavage and alkylation by 1 are similar to the sum of reactions
of the component parts.24 Thus, the tethered alkylator does not
inhibit binding of the intercalator at the mismatched site. 3′-end-
32P-labeling of the complementary B strand gives consistent results.
(15) Denny, W. A. Curr. Med. Chem. 2001, 8, 533-544.
(16) (a) Gourdie, T. A.; Valu, K. K.; Gravatt, G. L.; Boritzki, T. J.; Baguley,
B. C.; Wakelin, L. P. G.; Wilson, W. R.; Woodgate, P. D.; Denny, W. A.
J. Med. Chem. 1990, 33, 1177-1186. (b) Gravatt, G. L.; Baguley, B. C.;
Wilson, W. R.; Denny, W. A. J. Med. Chem. 1991, 34, 1552-1560. (c)
Gravatt, G. L.; Baguley, B. C.; Wilson, W. R.; Denny, W. A. J. Med.
Chem. 1994, 37, 4338-4345.
(17) Boger D. L.; Garbaccio, R. M. Acc. Chem. Res. 1999, 32, 1043-1052.
(18) Wurtz, N. R.; Dervan, P. B. Chem. Biol. 2000, 7, 153-161.
(19) Wang, Y.-D.; Dziegielewski, J.; Wurtz, N. R.; Dziegielewska, B.; Dervan,
P. B.; Beerman, T. A. Nucleic Acid Res. 2003, 31, 1208-1215.
(20) McClean, S.; Costelloe, C.; Denny, W. A.; Searcey, M.; Wakelin, L. P.
G. Anti-Cancer Drug Des. 1999, 14, 187-204.
(21) Mu¨rner, H.; Jackson, B. A.; Barton, J. K. Inorg. Chem. 1998, 37, 3007-
3012.
(22) Sitlani, A.; Long, E. C.; Pyle, A. M.; Barton, J. K. J. Am. Chem. Soc.
1992, 114, 2303-2312.
(23) Given the lack of complete reaction with piperidine, the relative intensities
at the two sites may not reflect the relative amounts of alkylation.
(24) The amount of cleavage due to alkylation at the 5′-G of the distal
5′-GNC-3′ site is 1.0%, and at the 5′-G of the proximal site it is 0.4%
(lane 4). The damage due to direct photocleavage alone is 0.3% (lane 5).
The sum of these two values is similar to the combined effects of alkylation
and photocleavage, 0.7% in lane 6. Also, the amount of photocleavage at
the 5′-G of the proximal site in the presence of conjugate 1 is similar to
that observed with untethered intercalator 2 (0.3% in lane 7).
JA048543M
9
J. AM. CHEM. SOC. VOL. 126, NO. 28, 2004 8631