472
H. UMEZAWA ET AL.
Table 2. Crystallographic data for 1a
angle between the polar b axis and the long axis of the
cation is unfortunately about 89.9 ꢀ, with the result that
the second-order NLO coefficient of the single crystal is
close to zero.
In conclusion, we found that tolan derivatives 1 with
trimethylammonio and dimethylamino groups are
organic ionic species with better second-order NLO pro-
perties than pNA. Further research to optimize the polar
alingment of the cations and investigation of cation modi-
fication are in progress to improve the optical properties
of the anilinium salts.
Formula
C19H23N2I
406.3
Monoclinic
P21
Formula weight
Crystal system
Space group
˚
a (A)
˚
b (A)
˚
c (A)
ꢀ( ꢀ)
19.80(1)
8.017(5)
5.876(5)
96.13(6)
927.57(1)
2
˚
V (A3)
Z
Dx (mg mꢂ3
)
1.454
REFERENCES
R
0.037
wR
0.046
1. Williams DJ (ed). Nonlinear Optical Properties of Organic and
Polymeric Materials. ACS Symposium Series, vol. 233. American
Chemical Society: Washington, DC, 1983.
ˆ
¨
2. Bosshard Ch, Sutter K, Pretre Ph, Hulliger J, Florsheimer M,
Kaatz P, Gu¨nter P. Organic Nonlinear Optical Materials. Advances
in Nonlinear Optics, vol. 1. Gordon and Breach: Basel, 1995.
3. Nalwa HS, Miyata S (eds). Nonlinear Optics of Organic Mole-
cules and Polymers. CRC Press: Boca Raton, FL, 1997.
4. Meredith GR. In Nonlinear Optical Properties of Organic and
Polymeric Materials, ACS Symposium Series, vol. 233. Williams
DJ (ed). American Chemical Society: Washington, DC, 1983;
27–56.
anilinium derivatives seemed to be saturated from 1 with
one triple bond between two aromatic rings to 2 with two
conjugated triple bonds. The smaller ꢀ0,expt of 2a than
that of 1a suggested saturation of the ꢁ-conjugation
elongation effect even at a molecular level. This tendency
is in contrast to the case of stilbazolium, which showed a
monotonic increase in ꢀ0,calc up to the compound with
four double bonds between two aromatic rings25 and
5. Okada S, Matsuda H, Nakanishi H, Kato M, Muramatsu R.
Japanese Patent Application 61-192404, 1986; Okada S, Matsuda
H, Nakanishi H, Kato M, Muramatsu R. Japanese Patent 1716929,
1992.
6. Nakanishi H, Matsuda H, Okada S, Kato M. Mater. Res. Soc. Int.
Mtg. Adv. Mater. 1989; 1: 97–104.
7. Marder SR, Perry JW, Schaefer WP. Science 1989; 245: 626–628.
8. Duan XM, Konami H, Okada S, Oikawa H, Matsuda H, Nakanishi
H. J. Phys. Chem. 1996; 100: 17780–17785.
9. Oudar JL, Chemla DS. J. Chem. Phys. 1977; 66: 2664–2668.
10. Okada S, Masaki A, Matsuda H, Nakanishi H, Kato M,
Muramatsu R, Otsuka M. Jpn. J. Appl. Phys. 1990; 29: 1112–1115.
11. Nogi K, Anwar, Tsuji K, Duan XM, Okada S, Oikawa H, Matsuda
H, Nakanishi H. Nonlinear Opt. 2000; 24: 35–40.
ꢀ
0,expt saturation between the compound with two double
bonds and that with three double bonds.26
The counter anion exchange reactions for 1a and 2a
were performed to modify the crystal structure. The intro-
duced counter anions were benzenesulfonate derivatives,
which often gaves SHG-active salts with stilbazolium
derivatives in our previous studies.10–12 Of 12 salts
synthesized, 1a, 1c, 2c and 2e were found to be SHG
active.
12. Umezawa H, Tsuji K, Anwar, Duan XM, Okada S, Oikawa H,
Matsuda H, Nakanishi H. Nonlinear Opt. 2000; 24: 73–78.
13. Tsuji K, Okada S, Oikawa H, Matsuda H, Nakanishi H. Chem.
Lett. 2001; 470–471.
14. Umezawa H, Tsuji K, Okada S, Oikawa H, Matsuda H, Nakanishi
H. Opt. Mater. 2002; 21: 75–78.
Among these four compounds, we have been able to
obtain single crystals of good quality for x-ray crystal-
lographic analysis only for 1a so far. Its crystallographic
data and crystal structure are shown in Table 2 and Fig. 6,
respectively. In the cation structure, two benzene rings
are slightly twisted by a dihedral angle of about 9 ꢀ, which
is not so serious enough to decrease the ꢀ value owing to
lack of ꢁ-orbital overlap. Although this crystal belongs to
the monoclinic noncentrosymmetric space group P21, the
ˆ
¨
15. Bosshard Ch, Sutter K, Pretre Ph, Hulliger J, Florsheimer M,
Kaatz P, Gu¨nter P. Organic Nonlinear Optical Materials.
Advances in Nonlinear Optics, vol. 1. Gordon and Breach: Basel,
1995; 17–43.
16. Kurihara T, Tabei H, Kaino T. J. Chem. Soc., Chem. Commun.
1987; 959–960.
17. Wang Y, Tam W, Stevenson SH, Clement RA, Calabrese J. Chem.
Phys. Lett. 1988; 148: 136–141.
18. Twieg R, Ebert M, Jungbauer D, Lux M, Reck B, Swalen J,
Teraoka I, Willson CG, Yoon DY, Zentel R. Mol. Cryst. Liq. Cryst.
1992; 216: 287–292.
19. Stiegman AE, Miskowski VM, Perry JW, Coulter DR. J. Am.
Chem. Soc. 1987; 109: 5884–5886.
20. Sonogashira K, Tohda Y, Hagihara N. Tetrahedron Lett. 1975;
4467–4470.
21. Tedeschi RJ, Brown AE. J. Org. Chem. 1964; 29: 2051–2053.
22. Hay AS. J. Org. Chem. 1962; 27: 3320–3321.
23. Clays K, Persoons A. Phy. Rev. Lett. 1991; 66: 2980–2983.
24. Pauley MA, Guan HW, Wang CH, Jen AKY. J. Chem. Phys. 1996;
104: 7821–7829.
25. Okada S, Tsuji K, Anwar, Nakanishi H, Oikawa H, Matsuda H.
Nonlinear Opt. 2000; 25: 45–56.
26. Clays K, Wostyn K, Olbrechts G, Persoons A, Watanabe A, Nogi
K, Duan XM, Okada S, Oikawa H, Nakanishi H, Vogel H,
´
Beljonne D, Bredas JL. J. Opt. Soc. Am. B 2000; 17: 256–265.
Figure 6. Crystal structure of 1a viewed along the c axis.
Hydrogen atoms are omitted
Copyright # 2004 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2005; 18: 468–472