Combretastatin analogs
Russ.Chem.Bull., Int.Ed., Vol. 64, No. 7, July, 2015
1563
3.01 (s, 3 H, CH3); 3.96 (s, 3 H, CH3). Found (%): C, 60.98;
H, 4.79; N, 3.93. C18H14NO4F•1.5H2O. Calculated (%): C, 61.02;
H, 4.84; N, 3.95.
4. R. Singh, H. Kaur, Synthesis, 2009, 15, 2471.
5. R. K. Gill, R. Kaur, G. Kaur, R. K. Rawal, A. K. Shah,
J. Bariwal, Curr. Org. Chem., 2014, 18, 2462.
(4Z)ꢀ2ꢀPhenylꢀ4ꢀ(phenylmethylidene)ꢀ1,3ꢀoxazolꢀ5(4H)ꢀone
(9) was obtained according to the procedure described earlier19
using potassium acetate. 1H NMR spectrum agrees with that
reported in the literatures (see Ref. 21, supporting information).
(5Z)ꢀ5ꢀ[(4ꢀMethoxyphenyl)methylidene]ꢀ3ꢀmethylꢀ2ꢀ(4ꢀmeꢀ
thylphenyl)ꢀ3,5ꢀdihydroꢀ4Hꢀimidazolꢀ4ꢀone (10). A 40% aqueous
solution of methylamine (5 mL) and potassium carbonate (0.1 g,
0.7 mmol) were added to a solution of oxazolone 6 (0.2 g,
0.7 mmol) in ethanol with stirring, the mixture was refluxed for
8 h with stirring. The solvent was evaporated, the residue was
subjected to chromatography (eluent ethyl acetate—light petroꢀ
leum ether (40—70 C), 1 : 3, then ethyl acetate) to obtain comꢀ
pound 10 (0.031 g, yield 15%), orange oily liquid, Rf = 0.53
(ethyl acetate—light petroleum ether, 1 : 3). 1H NMR (DMSOꢀd6),
: 7.85 (d, 2 H, Ar, J = 8.0 Hz); 7.51 (d, 2 H, Ar, J = 7.9 Hz);
6.90—7.05 (m, 4 H, Ar); 6.60 (s, 1 H, HC=); 3.89 (s, 3 H,
CH3O); 3.50 (s, 3 H, CH3N); 2.13 (s, 3 H, CH3). MS, m/z
(Irel (%)): 307.30 [M + H]+ (60). Found (%): C, 74.47; H, 5.87;
N, 9.12. C18H15NO3. Calculated (%): C, 74.49; H, 5.92; N, 9.14.
(5Z)ꢀ5ꢀ[(3,4ꢀDimethoxyphenyl)methylidene]ꢀ2ꢀ(4ꢀfluorophenꢀ
yl)ꢀ3ꢀmethylꢀ3,5ꢀdihydroꢀ4Hꢀimidazolꢀ4ꢀone (11) was syntheꢀ
sized similarly to compound 10 from oxazolone 8 (0.15 g,
0.4 mmol), 40% aqueous solution of methylamine (5 mL), and
potassium carbonate (0.1 g, 0.7 mmol) to obtain compound 10
(0.02 g, 12%), orange oily liquid, Rf = 0.6 (ethyl acetate—light
6. S. Zheng, Q. Zhong, M. Mottamal, Q. Zhang, C. Zhang,
E. LeMelle, H. McFerrin, G. Wang, J. Med. Chem., 2014,
57, 3369.
7. M. V. R. Reddy, M. R. Mallireddigari, V. R. Pallela, S. C.
Cosenza, V. K. Billa, B. Akula, D. R. C. V. Subbaiah, E. V.
Bharathi, A. Padgaonkar, H. Lv, J. M. Gallo, E. P. Reddy,
J. Med. Chem., 2013, 56, 5562.
8. J. Chen, Z. Wang, C. Li, Y. Lu, P. K. Vaddady, B. Meibohm,
J. T. Dalton, D. D. Miller, W. Li, J. Med. Chem., 2010,
53, 7414.
9. S. N. Mokale, D. Lokwani, D. B. Shinde, Bioorg. Med.
Chem., 2012, 20, 3119.
10. M. ElꢀAraby, A. Omar, H. Hassanein, H. ElꢀHelby, H. Abꢀ
delꢀGhany, H. AbdelꢀRahman, A. Asharf, Molecules, 2012,
17, 12262.
11. P. Wang, D. Naduthambi, R. T. Mosley, C. Niu, P. A. Furꢀ
man, M. J. Otto, M. J. Sofia, Bioorg. Med. Chem. Lett., 2011,
21, 4642.
12. W. Reeve, P. J. Pare, J. Am. Chem. Soc., 1957, 79, 675.
13. X. Li, J. Wang, J. Li, J. Wu, Y. Li, H. Zhu, R. Fan, W. Xu,
Bioorg. Med. Chem., 2009, 17, 3053.
14. I. Arenal, M. Bernabe, E. FernandezꢀAlvarez, Anales de
Quhmica, Ser. C, 1981, 77, 56.
15. T. Mosmann, J. Immunol. Methods, 1983, 65, 55.
16. K. Fendler, B. Hager, H. Falk, Monatsh. Chem., 2007,
138, 859.
1
petroleum ether, 1 : 3). H NMR (DMSOꢀd6), : 7.81 (d, 2 H,
Ar, J = 8.8 Hz); 7.48 (d, 1 H, Ar, J = 8.2 Hz); 7.38 (dd, 2 H, Ar,
J1 = 8.8 Hz, J2 = 1.0 Hz); 7.12 (s, 1 H, Ar); 7.04 (s, 1 H, HC=);
7.00 (d, 1 H, Ar, J = 8.2 Hz); 3.83 (s, 3 H, OCH3); 3.78 (s, 3 H,
OCH3); 3.45 (s, 3 H, NCH3). Found (%): C, 66.99; H, 5.01;
N, 8.22. C18H15NO3. Calculated (%): C, 67.05; H, 5.03; N, 8.23.
MTTꢀtest on cytotoxicity was carried out on human epitheꢀ
lial lung carcinoma cells (line Aꢀ549, CCLꢀ185) according to
the procedures described in the works.22,23
17. W. T. Chuang, C. C. Hsieh, C. C. Lai, C. H. Lai, C. W. Shih,
K. Y. Chen, W. Y. Hung, Y. H. Hsu, P. T. Chou, J. Org.
Chem., 2011, 76, 8189.
18. A. P. Lill, C. B. Rцdl, D. Steinhilber, H. Stark, B. Hofmann,
Eur. J. Med. Chem., 2015, 89, 503.
19. M. BlancoꢀLomas, I. FunesꢀArdoiz, P. J. Campos, D. Samꢀ
pedro, Eur. J. Org. Chem., 2013, 29, 6611.
20. F. Chavez, N. Kennedy, T. Rawalpally, R. T. Williamson,
T. Cleary, Org. Process Res. Dev., 2010, 35, 579.
21. M. BlancoꢀLomas, P. J. Campos, D. Sampedro, Org. Lett.,
2012, 14, 4334.
22. O. N. Zefirova, H. Lemcke, M. Lantow, E. V. Nurieva,
B. Wobith, G. E. Onishchenko, A. Hoenen, G. Griffiths, N. S.
Zefirov, S. A. Kuznetsov, ChemBioChem., 2013, 14, 1444.
23. O. N. Zefirova, Ya. S. Glazkova, E. V. Nurieva, N. A. Zeꢀ
firov, A. V. Mamaeva, B. Wobith, N. S. Zefirov, S. A. Kuzꢀ
netsov, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 1126 [Izv.
Akad. Nauk, Ser. Khim., 2014, 1126].
This work was financially supported by the Russian
Foundation for Basic Research (Project No. 15ꢀ03ꢀ04894),
the Division of Chemistry and Material Sciences of the
Russian Academy of Sciences, and the German Academic
Exchange Service, DAAD.
References
1. O. N. Zefirova, A. G. Diikov, N. V. Zyk, N. S. Zefirov, Russ.
Chem. Bull. (Int. Ed.), 2007, 56, 680 [Izv. Akad. Nauk, Ser.
Khim., 2007, 655].
2. N. H. Nam, Curr. Med. Chem., 2003, 10, 1697.
3. H. P. Hsieh, J. P. Liou, N. Mahindroo, Curr. Pharm. Des.,
2005, 11, 1655.
Received January 20, 2015;
in revised form April 24, 2015