important guidance in the optimisation of such solar cell dyes in
future studies and we suggest that the focus in the DSSC field on
4,4ꢀ-bipy ligands with almost no investigation of 3,3ꢀ-bipy may be
a missed opportunity for dye enhancement.
financial support and we thank the EPRSC Multifrequency EPR
National Service.
Notes and references
1 S. D. Cummings and R. Eisenberg, J. Am. Chem. Soc., 1996, 118, 1949.
2 M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D.
Cummings and R. Eisenberg, Coord. Chem. Rev., 2000, 208, 115.
3 E. A. M. Geary, N. Hirata, J. Clifford, J. R. Durrant, S. Parsons,
A. Dawson, L. J. Yellowlees and N. Robertson, Dalton Trans., 2003,
3757.
4 A. Islam, H. Sugihara, K. Hara, L. Pratap Singh, R. Katoh, M.
Yanagida, Y. Takahashi, S. Murata and H. Arakawa, New J. Chem.,
2000, 24, 343.
5 A. Islam, H. Sugihara, K. Hara, L. P. Singh, R. Katoh, M. Yanagida,
Y. Takahashi, S. Murata, H. Arakawa and G. Fujihashi, Inorg. Chem.,
2001, 40, 5371.
6 E. A. M. Geary, L. J. Yellowlees, L. A. Jack, I. D. H. Oswald, S. Parsons,
N. Hirata, J. R. Durrant and N. Robertson, Inorg. Chem., 2005, 44,
242.
7 J. Zhang, P. Du, J. Schneider, P. Jarosz and R. Eisenberg, J. Am. Chem.
Soc., 2007, 129, 7726.
8 M. K. Nazeeruddin and M. Graetzel, Comprehensive Coordination
Chemistry II, ed. J. A. McCleverty and T. J. Meyer, Elsevier Science,
Amsterdam, 2004, vol. 9, p. 719.
9 E. Galoppini, Coord. Chem. Rev., 2004, 248, 1283; N. Robertson,
Angew. Chem., Int. Ed., 2006, 45, 2338.
10 W. Paw, S. D. Cummings, M. A. Mansour, W. B. Connick, D. K. Geiger
and R. Eisenberg, Coord. Chem. Rev., 1998, 171, 125.
11 P.-H. Xie, Y.-J. Hou, T.-X. Wei, B.-W. Zhang, Y. Cao and C.-H. Huang,
Inorg. Chim. Acta, 2000, 308, 73; Y.-J. Hou, P.-H. Xie, B.-W. Zhang, Y.
Cao, X.-R. Xiao and W.-B. Wang, Inorg. Chem., 1999, 38, 6320.
12 L. Jack, Ph.D. Thesis, University of Edinburgh, 2003.
13 J. M. Bevilacqua and R. Eisenberg, Inorg. Chem., 1994, 33, 2913.
14 B. W. Smucker, J. M. Hudson, M. A. Omary and K. R. Dunbar, Inorg.
Chem., 2003, 42, 4714.
15 E. Koenig and S. Kremer, Chem. Phys. Lett., 1970, 5, 87.
16 V. T. Coombe, G. A. Heath, A. J. MacKenzie and L. J. Yellowlees, Inorg.
Chem., 1984, 23, 3423.
17 G. A. Heath, L. J. Yellowlees and P. S. Braterman, Chem. Commun.,
1981, 287.
18 E. J. L. McInnes, R. D. Farley, C. C. Rowlands, A. J. Welch, L. Rovatti
and L. J. Yellowlees, J. Chem. Soc., Dalton Trans., 1999, 4203.
19 P. H. Rieger, J. Magn. Reson., 1997, 124, 140.
Experimental
The synthesis of each compound 1–3(a–d) has previously been
reported.6 Electrochemical studies were carried out using a
DELL GX110PC with General Purpose Electrochemical System
(GPES), version 4.8, software connected to an autolab system
containing a PGSTAT 20 potentiostat. The technique used a three
electrode configuration, with a 0.5 mm diameter Pt disc working
electrode, a Pt rod counter electrode and an Ag/AgCl (saturated
KCl) reference electrode against which the ferrocenium/ferrocene
couple was measured to be +0.55 V. The supporting electrolyte
was 0.1 M tetrabutylammonium tetrafluoroborate (TBABF4),
solvent was dry, degassed DMF and concentration of compound
approximately 1 mmol.
OTTLE measurements were taken using a quartz cell of 0.5 mm,
a Pt/Rh gauze working electrode, an Ag/AgCl reference electrode
and a Pt wire counter electrode. UV-Vis spectra were recorded
on a Perkin-Elmer Lambda 9 spectrophotometer, controlled by a
Datalink PC, running UV/Winlab software. 0.1 M TBABF4 was
used as the supporting electrolyte in all cases.25
All in situ EPR spectra were recorded on an X-band Bruker
ER200D-SCR spectrometer, connected to a Datalink 486DX
PC running EPR Acquisition System, version 2.42 software. In
situ EPR experiments were electrogenerated using a BAS CV-
27 voltammograph. Variable temperature work was carried out
using a Bruker ER111VT variable temperature unit. In some
cases, solution spectra were recorded at reduced temperature to
ensure long-term stability of the reduced species. All g values
were corrected to 2,2ꢀ-diphenyl-1-picrylhydrazyl with gliterature
2.0036 0.0002. Spectra were simulated by manipulation of
=
parameters until a satisfactory reproduction of experimental
spectra was obtained, assuming couplings to the following nuclei:
20 E. J. L. McInnes, R. D. Farley, S. A. MacGregor, K. J. Taylor, L. J.
Yellowlees and C. C. Rowlands, J. Chem. Soc., Faraday Trans., 1998,
2985.
1
195Pt (I = 2 , 33.8% abundance), H (I = 12 , 100% abundance)
and 14N (I = 1, 100% abundance). Since each of these gives a
different combination of nuclear spin (hence splitting) and natural
abundance, no ambiguity in nuclear types arises in the simulations.
Density functional theory calculations of all complexes were
performed using either the Gaussian 03 program package26 or the
GAMESS-UK package.27 The starting structure was input using
the builder program Arguslab and default convergence conditions
of Gaussian 03 were used. The Becke three parameters hybrid
exchange and the Perdew–Wang 1991 correlation functionals
(B3PW91) were used.28,29 For the platinum atom the Hay–Wadt
VDZ(n+1)ECP was used30 with the other atoms described by 6-
31G*.31 The optimised structures were verified as minima on the
potential energy surface by the absence of negative values in the
frequency calculations. TD-DFT calculations were carried out in
the presence of a polarisable continuum model (PCM) DMF32
solvation field, with the first 25 singlet transitions calculated.
1
21 C. J. Adams, N. Fey, M. Parfitt, S. J. A. Pope and J. A. Weinstein, Dalton
Trans., 2007, 4446–4456.
22 C. Makedonas and C. A. Mitsopoulou, Eur. J. Inorg. Chem., 2006,
2460–2468; C. Makedonas, C. A. Mitsopoulou, F. J. Lahoz and A. I.
Balana, Inorg. Chem., 2003, 42, 8853.
23 A. Vlcˇek Jr. and S. Za´lisˇ, Coord. Chem. Rev., 2007, 251, 258–287.
24 N. Hirata, J.-J. Lagref, E. J. Palomares, J. R. Durrant, M. K.
Nazeeruddin, M. Gra¨tzel and D. Di Censo, Chem.–Eur. J., 2004, 10,
595.
25 E. Alessio, S. Daff, M. Elliot, E. Iengo, L. A. Jack, K. G. Macnamara,
J. M. Pratt and L. J. Yellowlees, Spectroelectrochemical techniques,
Trends Mol. Electrochem., 2004, 339.
26 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson,
Acknowledgements
We thank the University of Edinburgh Christina Miller fund
and the EPSRC Excitonic Solar Cells Supergen Consortium for
This journal is
The Royal Society of Chemistry 2008
Dalton Trans., 2008, 3701–3708 | 3707
©