10.1002/anie.202013039
Angewandte Chemie International Edition
RESEARCH ARTICLE
in functional cells, selectively labeling DNA replication foci in the
nuclei, thus demonstrating for the first time the selective staining
of three-way DNA in cellula with designed fluorescent probes.
Innovation/Spanish Research Agency (MCI/AEI/FEDER, RTI218-
096182-B-I00, CSIC13-4E-2076) and AGAUR (2017 SGR 208).
G.S. L.R.-M. and J.-D.M. thank Spanish MINECO (grant
CTQ2017-87889-P) and the Generalitat de Catalunya
(2017SGR1323). G.S., thanks Regione Autonoma della
Sardegna (grant RASSR79857) for his postdoctoral fellowship. L.
R.-M. thanks the Generalitat de Catalunya for her FI fellowship.
plasmid GFP-PCNAL2 was generously provided by Dr. Cristina
Cardoso. Molecular graphics with UCSF Chimera, developed by
the Resource for Biocomputing, Visualization, and Informatics at
the University of California, San Francisco, with support from NIH
P41-GM103311. 43 We are also grateful to Prof. Peter Scott of the
IAS at the University of Warwick for his insights and advice during
the preparation of this manuscript.
Acknowledgements
Financial support from the Spanish grant RTI2018-099877-B-I00,
the Xunta de Galicia (grupos con potencial de crecemento
ED431B 2018/04, Centro singular de investigación de Galicia
accreditation 2016–2019, ED431G/09, and ED431B 2018/04)
and the European Union (European Regional Development Fund
- ERDF) are gratefully acknowledged. J. G.-G. thanks the Spanish
Ministry of Science and Innovation/Spanish Research Agency for
his FPI fellowship. We also wish to express our gratitude to
Soraya Learte-Aymamí for her assistance in the optimization of
the EMSA assays. I. A. thanks Spanish Ministry of Science and
Keywords: DNA recognition • peptide design • metallopeptides •
supramolecular chemistry • coordination chemistry
[1]
a) W. M. Bloch, J. J. Holstein, B. Dittrich, W. Hiller, G. H. Clever, Angew.
Chem. Int. Ed. 2018, 57, 5534–5538; b) J. J. Danon, A. Krüger, D. A.
Leigh, J.-F. Lemonnier, A. J. Stephens, I. J. Vitorica-Yrezabal, S. L.
Woltering, Science 2017, 355, 159–162; c) J.-F. Ayme, J. E. Beves, D.
A. Leigh, R. T. McBurney, K. Rissanen, D. Schultz, Nat. Chem. 2012, 4,
15–20; d) J. P. Leonard, P. Jensen, T. McCabe, J. E. O’Brien, R. D.
Peacock, P. E. Kruger, T. Gunnlaugsson, J. Am. Chem. Soc. 2007, 129,
10986-10987; e) B. S. Pilgrim, D. A. Roberts, T. G. Lohr, T. K. Ronson,
J. R. Nitschke, Nat. Chem. 2017, 9, 1276–1281; f) Y. Inokuma, M.
Kawano, M. Fujita, Nat. Chem. 2011, 3, 349–358.
2012, 4, 31–36; f) X. Li, Z. Shi, J. Wu, J. Wu, C. He, X. Hao, C. Duan,
Chem. Commun. 2020, 56, 7537–7548.
[9]
a) G. Rama, A. Ardá, J.-D. Maréchal, I. Gamba, H. Ishida, J. Jiménez-
Barbero, M. E. Vázquez, M. Vázquez López, Chem. Eur. J. 2012, 18,
7030–7035; b) I. Gamba, G. Rama, E. Ortega-Carrasco, R. Berardozzi,
V. M. Sánchez-Pedregal, L. Di Bari, J.-D. Maréchal, M. E. Vázquez, M.
Vázquez López, Dalton Trans. 2016, 45, 881–885.
[10] I. Gamba, G. Rama, E. Ortega-Carrasco, J.-D. Maréchal, J. Martínez-
Costas, M. E. Vázquez, M. Vázquez López, Chem. Commun. 2014, 50,
11097–11100.
[2]
[3]
a) E. G. Baker, G. J. Bartlett, K. L. Porter Goff, D. N. Woolfson, Acc.
Chem. Res. 2017, 50, 2085–2092; b) B. Dang, H. Wu, V. K. Mulligan, M.
Mravic, Y. Wu, T. Lemmin, A. Ford, D.-A. Silva, D. Baker, W. F. DeGrado,
Proc. Natl. Acad. Sci. USA 2017, 114, 10852–10857; c) H. Gradišar, S.
Božič, T. Doles, D. Vengust, I. Hafner-Bratkovič, A. Mertelj, B. Webb, A.
Šali, S. Klavžar, R. Jerala, Nat. Chem. Biol. 2013, 9, 362–366.
a) E. Oheix, A. F. A. Peacock, Chem. Eur. J. 2014, 20, 2829–2839; b) Z.
Zhou, G. Roelfes, Nature Catalysis 2020, 3, 289–294; c) S. M. Meier-
Menches, A. Casini, Bioconjug. Chem. 2020, 31, 1279–1288; d) A.
Jacques, C. Lebrun, A. Casini, I. Kieffer, O. Proux, J.-M. Latour, O.
Sénèque, Inorg. Chem. 2015, 54, 4104–4113; e) H. Ishida, Y. Maruyama,
M. Kyakuno, Y. Kodera, T. Maeda, S. Oishi, ChemBioChem 2006, 7,
1567–1570.
[11] a) S. R. Raghothama, S. K. Awasthi, P. Balaram, J. Chem. Soc. Perkin
Trans. 2 1998, 137–144; b) A. Fragoso, P. Lamosa, R. Delgado, O.
Iranzo, Chem. Eur. J. 2013, 19, 2076–2088; c) M. D. Shults, B. Imperiali,
J. Am. Chem. Soc. 2003, 125, 14248–14249.
[12] A. M. C. Marcelino, L. M. Gierasch, Biopolymers 2008, 89, 380–391.
[13] a) G. D. Rose, L. M. Glerasch, J. A. Smith, in Adv. Prot. Chem. (Eds.:
C.B. Anfinsen, J.T. Edsall, F.M. Richards), Academic Press, 1985, pp.
1–109; b) V. Brenner, F. Piuzzi, I. Dimicoli, B. Tardivel, M. Mons, Angew.
Chem. Int. Ed. 2007, 46, 2463–2466.
[14] M. G. Bomar, B. Song, P. Kibler, K. Kodukula, A. K. Galande, Org. Lett.
2011, 13, 5878–5881.
[15] a) J. DeRouchey, B. Hoover, D. C. Rau, Biochemistry 2013, 52, 3000–
3009; b) S. M. West, R. Rohs, R. S. Mann, B. Honig, J. Biomol. Struct.
Dyn. 2010, 27, 861–866; c) C. Crane-Robinson, A. I. Dragan, P. L.
Privalov, Trends Biochem. Sci. 2006, 31, 547–552; d) D. P. Mascotti, T.
M. Lohman, Biochemistry 1997, 36, 7272–7279.
[4]
[5]
a) C. Piguet, G. Bernardinelli, G. Hopfgartner, Chem. Rev. 1997, 97,
2005-2062; b) M. Albrecht, Chem. Rev. 2001, 101, 3457–3498; c) M.
Albrecht, Angew. Chem. Int. Ed. 2005, 44, 6448–6451.
a) J.-F. Ayme, J.-M. Lehn, C. Bailly, L. Karmazin, J. Am. Chem. Soc.
2020, 142, 5819–5824; b) J.-F. Ayme, J. E. Beves, C. J. Campbell, D. A.
Leigh, Angew. Chem. Int. Ed Engl. 2014, 53, 7823–7827.
[16] L. Cardo, V. Sadovnikova, S. Phongtongpasuk, N. J. Hodges, M. J.
Hannon, Chem. Commun. 2011, 47, 6575–6577.
[17] I. Coin, M. Beyermann, M. Bienert, Nat. Protoc. 2007, 2, 3247–3256.
[18] We have omitted the charges to avoid confusion between the formal
charges of the helicates and the actual charges of the complexes
including the protonated Arg side chains and the N-terminal ammonium.
[19] To our surprise, while the 2,2'-bipyridine ligand is known to be weakly
emissive, and for all practical purposes considered non-fluorescent, the
5'-amido-[2,2'-bipyridine]-5-carboxamide unit in the βAlaBpy building
block was highly emissive (Φ ≈ 0.37). a) S. Dhanya, P. K. Bhattacharyya,
J. Photochem. Photobiol. A Chem. 1992, 63, 179-185; b) M. Yagi, T.
Kaneshima, Y. Wada, K. Takemura, Y. Yokoyama, J. Photochem.
Photobiol. A Chem. 1994, 84, 27-32.
[6]
[7]
D. E. Mitchell, G. Clarkson, D. J. Fox, R. A. Vipond, P. Scott, M. I. Gibson,
J. Am. Chem. Soc. 2017, 139, 9835–9838.
a) Y. Guan, Z. Du, N. Gao, Y. Cao, X. Wang, P. Scott, H. Song, J. Ren,
X. Qu, Sci Adv 2018, 4, eaao6718; b) M. Li, S. E. Howson, K. Dong, N.
Gao, J. Ren, P. Scott, X. Qu, J. Am. Chem. Soc. 2014, 136, 11655–
11663.
[8]
a) C. Zhao, H. Song, P. Scott, A. Zhao, H. Tateishi-Karimata, N.
Sugimoto, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2018, 57, 15723–15727;
b) A. D. Faulkner, R. A. Kaner, Q. M. A. Abdallah, G. Clarkson, D. J. Fox,
P. Gurnani, S. E. Howson, R. M. Phillips, D. I. Roper, D. H. Simpson, et
al., Nat. Chem. 2014, 6, 797–803; c) R. A. Kaner, S. J. Allison, A. D.
Faulkner, R. M. Phillips, D. I. Roper, S. L. Shepherd, D. H. Simpson, N.
R. Waterfield, P. Scott, Chem. Sci. 2015, 7, 951–958; d) A. Oleksi, A. G.
Blanco, R. Boer, I. Usón, J. Aymamí, A. Rodger, M. J. Hannon, M. Coll,
Angew. Chem. Int. Ed. 2006, 45, 1227–1231; e) S. E. Howson, A. Bolhuis,
V. Brabec, G. J. Clarkson, J. Malina, A. Rodger, P. Scott, Nat. Chem.
[20] a) P. Kuzmic, Anal. Biochem. 1996, 237, 260–273; P. Kuzmič, in
Methods Enzymol., Academic Press, 2009, pp. 247–280.
[21] L. K. S. von Krbek, C. A. Schalley, P. Thordarson, Chem. Soc. Rev. 2017,
46, 2622–2637.
This article is protected by copyright. All rights reserved.