966
S. P. Chavan et al. / Tetrahedron Letters 48 (2007) 965–966
M.; Taniguchi, T.; Ogasawara, Kunio Tetrahedron Lett.
O
O
2000, 41, 2639–2642; (d) Saritas, Y.; Sonwa, M. M.;
Iznaguen, H.; Konig, W. A.; Munle, H.; Muse, R.
Phytochemistry 2001, 57, 443–447; (e) Shindo, M.; Sato,
Y.; Shishindo, K. J. Org. Chem. 2001, 66, 7818–7824; (f)
Srikrishna, A.; Rao, M. S. Synlett 2002, 340–342; (g)
Satoh, T.; Yoshida, M.; Takahashi, Y.; Ota, H. Tetra-
hedron: Asymmetry 2003, 14, 281–288; (h) Paul, T.; Pal,
A.; Mukharjee, D. ARKIVOC 2003, ix, 104–114; (i)
Kuwahara, S.; Saito, M. Tetrahedron Lett. 2004, 45,
5047–5049; (j) Saito, M.; Kuwahara, S. Biosci. Biotechnol.
Biochem. 2005, 69, 374–381; (k) Bernard, A. M.; Frongia,
A.; Secci, F.; Piras, P. P. Chem. Commun. 2005, 30, 3853–
3855.
i
ii
iii
2
3
4
5
O
O
PCy3
Ru
Cl
Cl
iv
v
Ph
PCy3
Grubbs 1st. gen. cat.
6
1
Scheme 2. Reagents and conditions: (i) InCl3, Me3SiCl, allyl trimeth-
ylsilane, EDC, 8 h, 30%; (ii) Grubbs’ 1st generation cat., DCM, rt, 5 h,
90%; (iii) PDC, pyridine, 100 °C, 7 h, 65%; (iv) NaH, DMF, CH3I
(excess), rt, 12 h, 70% and (v) H2–Pd/C, EtOH, piperidine, 4 h,
quantitative yield.
4. For a recent synthesis see: Kulkarni, M. G.; Davawala, S.
I.; Shinde, M. P.; Dhondge, A. P.; Borhade, A. S.;
Chavhan, S. W.; Gaikawad, D. D. Tetrahedron Lett. 2006,
47, 3027–3029, and references cited therein.
5. (a) Parker, W.; Ramage, R. A. J. Chem. Soc. 1962, 1558–
1563; (b) Nakatani, H.; So, T.; Ishibashi, H.; Ikeda, M.
Chem. Pharm. Bull. 1990, 38, 1233–1237.
6. (a) Abad, A.; Agullo, C.; Arno, M.; Cunat, A. C.; Garcia,
M. T.; Zaragoza, R. J. J. Org. Chem. 1996, 61, 5916; (b)
Abad, A.; Agullo, C.; Cunat, A. C.; Perni, R. H. J. Org.
Chem. 1999, 64, 1741.
Olefin 3 could be realised by one-pot diallylation of 4-
methyl acetophenone 2 on treatment with InCl3,9 allyl
trimethylsilane and TMS–Cl in ethylene dichloride
(EDC) as the solvent at room temperature to furnish
diallyl compound 3 (Scheme 2).
7. (a) Chavan, S. P.; Ethiraj, K. S. Tetrahedron Lett. 1995,
36, 2281–2284; (b) Chavan, S. P.; Ravindranathan, T.;
Patil, S. S.; Dhondge, V.; Dantale, S. W. Tetrahedron Lett.
1996, 37, 2629–2630; (c) Chavan, S. P.; Ravindranathan,
T.; Patil, S. S. Tetrahedron 1999, 40, 4733–4734; (d)
Chavan, S. P.; Thakkar, M.; Kharul, R. K.; Pathak, A. B.;
Bhosekar, G. V.; Bhadbhade, M. M. Tetrahedron 2005,
61, 3873–3879; (e) Chavan, S. P.; Kharul, R. K.; Kale, R.
R.; Khobragade, D. A. Tetrahedron 2003, 59, 2737–2741.
8. (a) Chavan, S. P.; Pasupathy, K.; Venkatraman, M. S.;
Kale, R. R. Tetrahedron Lett. 2004, 45, 6879; (b) Chavan,
S. P.; Praveen, Ch. Tetrahedron Lett. 2005, 46, 1939; (c)
Chavan, S. P.; Thakkar, M.; Jogdand, G. F.; Kalkote, U.
R. J. Org. Chem. 2006, 71, 8986–8988.
9. Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Tetrahedron
2002, 58, 8227–8235.
10. Dias, E. L.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem.
Soc. 1997, 119, 3887–3897.
11. Srikrishna, A.; Rao, S. M. Eur. J. Org. Chem. 2004, 499–
503.
Ring closing metathesis of diallyl compound 3 using
Grubbs’ 1st generation catalyst10 furnished cyclo-
pentene 4. Treatment of 4 with PDC11 in pyridine at
100 °C furnished the rearranged a,b-unsaturated ketone
5. Dimethylation7b of 5 was carried out using sodium
hydride as a base and methyl iodide in DMF as the
solvent to furnish compound 6. Finally hydrogenation
of 6 using 10% Pd/C in ethanol and catalytic piperidine
afforded ( )-a-cuparenone, in quantitative yield.
The analytical and spectral data obtained for a-cupare-
none12,13 were in complete agreement with reported
data. In conclusion, ( )-a-cuparenone was obtained in
an overall yield of 12%, in five steps starting from com-
mercially available 4-methyl acetophenone employing
simple reaction conditions.
12. Wenkert, E.; Buckwalter, B. L.; Crareiro, A. A.; Sancher,
E. L.; Sathe, S. S. J. Am. Chem. Soc. 1978, 100, 1267–1273.
13. All the compounds were characterized by IR, H NMR,
Acknowledgements
1
13C NMR and mass spectral analysis. Spectral data:
Compound 3: 1H NMR (CDCl3, 200 MHz) d: 1.23, (s,
3H), 2.30, (s, 3H), 2.46 (dd, J = 6.6, 13.8 Hz, 2H), 2.25
(dd, J = 6.6, 13.8 Hz, 2H), 4.89–4.99 (m, 4H), 5.40–5.61
(m, 2H), 7.18 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H).
Compound 4: 1H NMR (CDCl3, 200 MHz) d: 1.38 (s, 3H)
2.30 (s, 3H), 2.45 (d, J = 14.2 Hz, 2H), 2.73, (d,
J = 14.2 Hz, 2H), 5.71 (s, 2H), 7.11 (d, J = 8.34 Hz, 2H),
7.20 (d, J = 8.34 Hz, 2H). Compound 5: 1H NMR
(CDCl3, 200 MHz) d: 1.63 (s, 3H) 2.34 (s, 3H) 2.60 (d,
J = 7 Hz, 2H) 6.2 (d, J = 5.5 Hz, 1H), 7.16 (s, 4H), 7.67 (d,
J = 5.6 Hz, 1H). Compound 6: 1H NMR (CDCl3,
200 MHz) d: 0.55 (s, 3H), 1.20 (s, 3H), 1.49 (s, 3H), 1.35
(s, 3H), 6.25 (d, J = 7 Hz, 1H), 7.75 (d, J = 7 Hz, 1H), 7.10
(m, 4H). Compound 1: 1H NMR (CDCl3, 200 MHz) d: 0.6
(s, 3H), 1.20 (s, 3H), 1.30 (s, 3H), 1.90 (m, 1H), 2.30 (s,
3H), 2.50 (m, 2H), 2.60 (m, 1H), 7.20–7.30 (m, 4H).
A.N.D. thanks CSIR, New Delhi, for the award of
fellowship. Funding from DST (CSIR), New Delhi,
India, to S.P.C. is gratefully acknowledged.
References and notes
1. Acherar, S.; Audran, G.; Cecchin, F.; Monti, H. Tetra-
hedron 2004, 60, 5907–5912, and references cited therein.
2. (a) Dev, S.; Chetty, G. L. Tetrahedron Lett. 1964, 73–74;
(b) Benesova, V. Collect. Czech. Chem. Commun. 1976,
3812–3814.
3. (a) Chavan, S. P.; Ravindranathan, T.; Patil, S. S.
Tetrahedron 1999, 55, 13417–13422, and references cited
therein; (b) Zarraga, A.; Gustavo, J.; Maldonado, Luis A.
Chem. Lett. 2000, 5, 512–513; (c) Nakashima, H.; Sato,