ACS Medicinal Chemistry Letters
Page 4 of 6
Human EtherꢀaꢀgoꢀgoꢀRelated Gene (hERG) Blockers J. Med.
Chem. 2006, 49 (23), 6917–6921.
1
2
3
4
5
6
7
8
Synthetic procedures and characterization of new compounds,
experimental details of in vitro assays. Fluorescent spectra of
compound 3a (PDF).
(11)
(12)
Ho, B. Y.; Karschin, A.; Branchek, T.; Davidson, N.; Lester, H.
A. The role of conserved aspartate and serine residues in ligand
binding and in function of the 5ꢀHT1A receptor: A siteꢀdirected
mutation study FEBS Lett. 1992, 312 (2–3), 259–262.
Savarese, T. M.; Fraser, C. M. In vitro mutagenesis and the
search for structureꢀfunction relationships among G proteinꢀ
coupled receptors Biochem. J. 1992, 283 ( Pt 1, 1–19.
AUTHOR INFORMATION
Corresponding Author
†Tel.: +48 12 6623320, email: staron@if-pan.krakow.pl
(13)
(14)
Schwartz, T. W. Locating ligandꢀbinding sites in 7tm receptors
by protein engineering Curr. Op. Biotech. 1994, 5 (4), 434–444.
Strader, C. D.; Sigal, I. S.; Candelore, M. R.; Rands, E.; Hill, W.
S.; Dixon, R. a. Conserved aspartic acid residues 79 and 113 of
the betaꢀadrenergic receptor have different roles in receptor
function. J .Biol. Chem. 1988, 263 (21), 10267–10271.
Ivachtchenko, A. V; Golovina, E. S.; Kadieva, M. G.; Kysil, V.
M.; Mitkin, O. D.; Tkachenko, S. E.; Okun, I. M. Synthesis and
Structure−Activity Relationship (SAR) of (5,7ꢀ Disubstituted 3ꢀ
phenylsulfonylꢀpyrazolo[1,5ꢀa]pyrimidinꢀ2ꢀyl)ꢀ methylamines
as Potent Serotonin 5ꢀHT6 Receptor (5ꢀHT6R) Antagonists J.
Med. Chem. 2011, 54, 8161–8173.
van Loevezijn, A.; Venhorst, J.; Bakker, W. I. I.; de Korte, C.
G.; de Looff, W.; Verhoog, S.; van Wees, J.ꢀW.; van Hoeve, M.;
van de Woestijne, R. P.; van der Neut, M. A. W.; Borst, A. J.
M.; van Dongen, M. J. P.; de Bruin, N. M. W. J.; Keizer, H. G.;
Kruse, C. G. N’ꢀ( Arylsulfonyl)pyrazolineꢀ1ꢀcarboxamidines as
Novel , Neutral 5ꢀHydroxytryptamine 6 Receptor (5ꢀHT6R)
Antagonists with Unique Structural Features J. Med. Chem.
2011, 54, 7030–7054.
Author Contributions
9
J.S. designed and synthesized compounds, S.M. performed the
docking to the 5ꢀHT6R model, D.W. performed the virtual screenꢀ
ing protocol, G.S. performed the in vitro tests, A.H. performed the
spectral analysis of compounds. J.S. and A.J.B. wrote the paper
with input from coauthors.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15)
(16)
ACKNOWLEDGMENT
The study was partially supported by the grant OPUS
2014/13/B/NZ7/02210 from the Polish National Science Centre
and grant PBS3/B7/20/2015 from the Polish National Centre for
Research and Development.
ABBREVIATIONS
(17)
(18)
Warr, W. A. Scientific workflow systems: Pipeline Pilot and
KNIME. J. Comp. Aided Mol. Des. 2012, 26 (7), 801–804.
Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies,
M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Alꢀ
Lazikani, B.; Overington, J. P. ChEMBL:
bioactivity database for drug discovery. Nucleic Acids Res.
2012, 40 (Database issue), D1100–D1107.
5ꢀHT, 5ꢀhydroxytryptamine; 5ꢀHT6R, 5ꢀhydroxytryptamine reꢀ
ceptor 6; mRNA, messanger RNA; GPCR, Gꢀprotein coupled
receptor; hERG, human Ether-à-go-goꢀRelated Gene; DMF,
dimethylformamide; NCS, Nꢀchlorosuccimide; PPh3, triꢀ
phenylphosphine; DIBALꢀH, diisobutylaluminium hydride; D2,
dopamine receptor 2; GPCRdb, Gꢀ protein coupled receptor dataꢀ
base, S.D., standard deviation.
a largeꢀscale
(19)
(20)
Balczewski, P.; Joule, J. A.; Estevez, C.; Alvarez, M. Synthesis
of Some Pyrrolo[4,3,2ꢀde]quinolines J. Org. Chem. 1994, 59,
4571–4575.
Takayama, Y.; Yamada, T.; Tatekabe, S.; Nagasawa, K. A
tandem Friedel–Crafts based method for the construction of a
tricyclic pyrroloquinoline skeleton and its application in the
synthesis of ammosamide B Chem. Comm. 2013, 49, 6519–
6521.
Brown, M. J.; Carter, P. S.; Fenwick, A. E.; Fosberry, A. P.;
Hamprecht, D. W.; Hibbs, M. J.; Jarvest, R. L.; Mensah, L.;
Milner, P. H.; O’Hanlon, P. J.; Pope, A. J.; Richardson, C. M.;
West, A.; Witty, D. R. The antimicrobial natural product
chuangxinmycin and Some synthetic analogues are potent and
selective inhibitors of bacterial tryptophanyl tRNA synthetase
Bioorg. Med. Chem. Lett. 2002, 12 (21), 3171–3174.
Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsøe, K.;
Hauser, A. S.; Vroling, B.; Bojarski, A. J.; Vriend, G.; Gloriam,
D. E. GPCRdb: an information system for G proteinꢀcoupled
receptors Nucleic Acids Res. 2016, 44 (D1), D356–D364.
de la Fuente, T.; MartínꢀFontecha, M.; Sallander, J.; Benhamú,
B.; Campillo, M.; Medina, R. a; Pellissier, L. P.; Claeysen, S.;
Dumuis, A.; Pardo, L.; LópezꢀRodríguez, M. L. Benzimidazole
derivatives as new serotonin 5ꢀHT6 receptor antagonists.
Molecular mechanisms of receptor inactivation. J. Med. Chem.
2010, 53 (3), 1357–1369.
Harris, R. N.; Stabler, R. S.; Repke, D. B.; Kress, J. M.; Walker,
K. A.; Martin, R. S.; Brothers, J. M.; Ilnicka, M.; Lee, S. W.;
Mirzadegan, T. Highly potent , nonꢀbasic 5ꢀHT 6 ligands. Site
mutagenesis evidence for a second binding mode at 5ꢀHT 6 for
antagonism Bioorgan. Med. Chem. Lett. 2010, 20 (11), 3436–
3440.
GonzálezꢀVera, J. A.; Medina, R. A.; MartínꢀFontecha, M.;
Gonzalez, A.; de la Fuente, T.; VázquezꢀVilla, H.; Garcíaꢀ
Cárceles, J.; Botta, J.; McCormick, P. J.; Benhamú, B.; Pardo,
L.; LópezꢀRodríguez, M. L. A new serotonin 5ꢀHT6 receptor
antagonist with procognitive activity – Importance of a halogen
bond interaction to stabilize the binding Sci. Rep. 2017, 7,
41293.
REFERENCES
(1)
Monsma, F. J.; Shen, Y.; Ward, R. P.; Hamblin, M. W.; Sibley,
D. R. Cloning and Expression of a Novel Serotonin Affinity for
Tricyclic Psychotropic Drugs Receptor with High Mol.
Pharmacol. 1992, 43 (3), 320–327.
(21)
(2)
(3)
Sleight, A. J.; Boess, F. G.; Bös, M.; Bourson, A. The putative
5ꢀht6 receptor: localization and function. Ann. NY. Acad. Sci.
1998, 861 (1), 91–96.
Ruat, M.; Traiffort, E.; Arrang, J. M.; Tardivellacombe, J.; Diaz,
J.; Leurs, R.; Schwartz, J. C. A Novel Rat Serotonin (5ꢀHT6)
Receptor: Molecular Cloning, Localization and Stimulation of
cAMP Accumulation Biochem. Bioph. Res. Co. 1993, 193 (1),
268–276.
(22)
(23)
(4)
Ward, R. P.; Hamblin, M. W.; Lachowicz, J. E.; Hoffman, B. J.;
Sibley, D. R.; Dorsa, D. M. Localization of Serotonin Subtype 6
Receptor Messenger RNA In The Rat Brain By In Situ
Hybridization Hisdtochemistry Neuroscience 1995, 64 (4),
1105–1111.
(5)
(6)
Nikiforuk, A. The procognitive effects of 5ꢀHT6 receptor
ligands in animal models of schizophrenia. Revi. neurosci. 2014,
25 (3), 367–382.
Jacobshagen, M.; Niquille, M.; ChaumontꢀDubel, S.; Marin, P.;
Dayer, A. The serotonin 6 receptor controls neuronal migration
during corticogenesis via a ligandꢀindependent Cdk5ꢀdependent
mechanism. Development 2014, 3370–3377.
(24)
(25)
(7)
Dayer, A. G.; Jacobshagen, M.; ChaumontꢀDubel, S.; Marin, P.
5ꢀHT6 Receptor: A New Player Controlling the Development of
Neural Circuits ACS Chem. Neurosci. 2015, 6 (7), 951–960.
Kratz, J. M.; Schuster, D.; Edtbauer, M.; Saxena, P.; Mair, C.
E.; Kirchebner, J.; Matuszczak, B.; Baburin, I.; Hering, S.;
(8)
(9)
Rollinger,
J.
M.
Experimentally Validated
hERG
Pharmacophore Models as Cardiotoxicity Prediction Tools J.
Chem. Inf. Model. 2014, 54 (10), 2887–2901.
(26)
Questel, J. Le; Berthelot, M.; Laurence, C. Hydrogenꢀbond
acceptor properties of nitrilesꢁ: a combined crystallographic and
ab initio theoretical investigation J. Phys. Org. Chem. 2000, 13,
(10)
Aronov, A. M. Common Pharmacophores for Uncharged
4
ACS Paragon Plus Environment