VI
Another application of (NH4)42[Mo MoV60O372(CH3COO)30(H2O)72]
72
Table 2. {Mo132}-catalysed synthesis of dihydropyrano[3,2-c]
chromenes 4a–na
produce intermediates II and III, respectively. Finally, the products
4a–n are obtained from the latter intermediate after
tautomerization. On the basis of our previous reports,[37,38] it is rea-
sonable to assume that several accessible Mo sites and NH4 groups
in {Mo132} could act as Lewis acid and Brønsted acid centres, respec-
tively, and therefore promote the necessary reactions. The catalyst
would play a significant role in increasing the electrophilic character
of the electrophiles in the reaction.
Entry
R
Products Time Isolated
(min) yield
(%)
M.p. (°C)
Found Reported
1
C6H5
2-ClC6H4
4-ClC6H4
4-FC6H4
3-O2NC6H4
4-O2NC6H4
4-HOC6H4
4-MeOC6H4
2-Thienyl
3-Pyridyl
Me
4a
4b
4c
12
20
10
20
13
10
20
10
12
15
19
25
23
25
92
92
94
90
94
95
90
95
93
91
92
90
93
92
259–261 255–256[4]
266–268 267–269[8]
265–266 263–264[6]
260–261 262–263[6]
266–268 266–267[8]
253–255 252–254[8]
261–262 261–263[8]
243–245 244–246[8]
255–257 256–258[7]
254–256 257–259[11]
227–228 227–229[7]
238–240 239–241[7]
241–243 240–242[8]
251–253 251–253[8]
2
3
Conclusions
4
4d
4e
4f
5
We have found that {Mo132} can be used as a new, reusable and ef-
ficient catalyst for the preparation of a variety of dihydropyrano[3,2-
c]chromenes by one-pot three-component reaction of 4-
hydroxycoumarin, aldehydes and malononitrile. The reaction oc-
curs in ethanol–water at room temperature and furnishes the ex-
pected products in high yields over short reaction times. This
property combined with ease of recovery and catalyst reusability
makes this method an economic, benign and waste-free chemical
process for the synthesis of dihydropyrano[3,2-c]chromenes.
6
7
4 g
4 h
4i
8
9
10
11
12
13
14
4j
4 k
4 l
Et
n-Pr
4 m
4n
i-Pr
aReaction conditions: 4-hydroxycoumarin (1; 1 mmol), an aldehyde
(2a–n; 1 mmol), malononitrile (3; 1 mmol), {Mo132} (0.07 g), EtOH–
H2O (1:1, 2 ml), room temperature.
Acknowledgments/Acknowledgements according to UK/US
spelling of paper
The authors express their gratitude to the Islamic Azad University,
Mashhad Branch for its financial support.
References
[1] G. R. Green, J. M. Evans, A. K. Vong, in Comprehensive Heterocyclic
Chemistry II, Vol. 5 (Eds: A. R. Katritzky, C. W. Rees, E. F. Scriven),
Pergamon Press, Oxford, 1995, p. 469.
[2] W. O. Foye, Principi Di Chemico Frmaceutica, Piccin, Padova, Italy, 1991,
p. 416.
[3] J. P. Patel, J. R. Avalani, D. K. Raval, J. Chem. Sci. 2013, 125, 531.
[4] M. T. Maghsoodlou, N. Hazeri, M. Lashkari, F. N. Shahrokhabadi,
B. Naghshbandi, M. S. Kazemi-doost, M. Rashidi, F. Mir, M. Kangani,
S. Salahi, Res. Chem. Intermed. 2015, 41, 6985.
[5] M. M. Heravi, B. Alimadadi-Jani, F. Derikvand, F. F. Bamoharram,
H. A. Oskooie, Catal. Commun. 2008, 10, 272.
[6] Y. Wang, H. Ye, G. Zuo, J. Luo, J. Mol. Liq. 2015, 212, 418.
[7] M. Khoobi, M. Alipour, A. Moradi, A. Sakhteman, H. Nadri, S. F. Razavi,
M. Ghandi, A. Foroumadi, A. Shafiee, Eur. J. Med. Chem. 2013, 68, 291.
[8] M. Esmaeilpour, J. Javidi, F. Dehghani, F. Nowroozi Dodeji, RSC Adv.
2015, 5, 26625.
[9] K. Tabatabaeian, H. Heidari, M. Mamaghani, N. O. Mahmoodi, Appl.
Organomet. Chem. 2012, 26, 56.
[10] S. S. Sajadikhah, M. T. Maghsoodlou, N. Hazeri, M. Norouzi, M. Moein,
Res. Chem. Intermed. 2015, 41, 8665.
[11] M. Abaszadeh, M. Seifi, Res. Chem. Intermed. 2015, 41, 7715.
[12] J. M. Khurana, S. Kumar, Tetrahedron Lett. 2009, 50, 4125.
[13] S. Abdolmohammadi, S. Balalaie, Tetrahedron Lett. 2007, 48, 3299.
[14] A. Baiker, Chem. Rev. 1998, 99, 453.
Scheme 2. Plausible mechanism for the formation of dihydropyrano[3,2-c]
chromenes in the presence of {Mo132} as catalyst.
[15] A. Corma, H. García, F. X. Llabrés i Xamena, Chem. Rev. 2010, 110, 4606.
[16] S. H. Lee, S. T. Kadam, Appl. Organomet. Chem. 2011, 25, 608.
[17] Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, Y. Yang, Chem. Soc. Rev.
2014, 43, 3480.
[18] H. Veisi, M. R. Poor Heravi, M. Hamelian, Appl. Organomet. Chem. 2015,
29, 334.
[19] G. Imani Shakibaei, P. Mirzaei, A. Bazgir, Appl. Catal. A 2007, 325, 188.
[20] G. V. Smith, F. Notheisz, Heterogeneous Catalysis in Organic Chemistry,
Elsevier, San Diego, CA, 1999.
vacuum for 1 h before being reused in a similar reaction. The cata-
lyst could be used at least five times without significant reduction in
its activity (94, 93, 93, 92 and 91% yields for first to fifth use, respec-
tively) which clearly demonstrates the practical reusability of this
catalyst. This reusability demonstrates the high stability and turn-
over of {Mo132} under the employed conditions.
[21] N. Mohammadzadeh-Dehsorkh, A. Davoodnia, N. Tavakoli-Hoseini,
M. Moghaddas, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2011,
41, 1135.
[22] N. Tavakoli-Hoseini, A. Davoodnia, Chin. J. Chem. 2011, 29, 203.
[23] A. Davoodnia, Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2012, 42,
1022.
Although we did not investigate the reaction mechanism, a plau-
sible mechanism for this reaction may proceed as depicted in
Scheme 2. As shown, the dicyano olefin I is readily formed in situ
by Knoevenagel condensation of aldehydes 2a–n and 3.
Compound 1 easily reacts with olefin I followed by cyclization to
Appl. Organometal. Chem. (2016)
Copyright © 2016 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc