K. Yu et al. / Tetrahedron 65 (2009) 305–311
311
among the heterogeneous catalysts, but the catalyst 12M48-1
References and notes
obtained higher ee values than 14M48-1 for the epoxidation of sty-
rene and indene (entries 7, 8, 15, and 16) and the catalyst 14M41-1
presentedbetterenantioselectivitythan16M41-1 for theepoxidation
of indene (entries 11 and 12). This may be due to the confinement
effect of the nanopores of 12MCM-48 and 14MCM-41, which were
more compatible with the molecular size of styrene and indene.
Similarly, the catalysts 2, nM41-2 and nM48-2 were also
employed to catalyze the epoxidation of styrene and indene, and
the results are listed in Table 5. It could be observed for the catalysts
nM41-2 and nM48-2, the immobilized catalysts based on the large-
pore size mesoporous supports showed better activity and enan-
tioselectivity, and the catalysts supported by the small pore size
mesoporous materials exhibited lower conversions and ee values.
In summary, the catalytic performance of mesoporous materials
supported catalysts was closely related to the pore sizes of the
parent supports for the epoxidation of styrene and indene. The
larger pore size of the supports would lead to higher conversions
and ee values, however, the compatible pore size with substrate
sometimes may be responsible for the improved ee values.
1. Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990, 112,
2801–2803.
2. Srinivasan, K.; Michaud, P.; Kochi, J. K. J. Am. Chem. Soc. 1986, 108, 2309–
2320.
3. Zhang, H.; Li, C. Tetrahedron 2006, 62, 6640–6649.
4. Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159–
2232.
5. Song, C.-E.; Lee, S.-G. Chem. Rev. 2002, 102, 3495–3524.
6. Fan, Q.-H.; Li, Y.-M.; Chan, A. S. C. Chem. Rev. 2002, 102, 3385–3466.
7. Li, C. Catal. Rev.dSci. Eng. 2004, 46, 419–492.
8. McMorn, P.; Hutchings, G. J. Chem. Soc. Rev. 2004, 33, 108–122.
9. Xia, Q.-H.; Ge, H.-Q.; Ye, C.-P.; Liu, Z.-M.; Su, K.-X. Chem. Rev. 2005, 105, 1603–
1662.
10. Heitbaum, M.; Glorius, F.; Escher, I. Angew. Chem., Int. Ed. 2006, 45,
4732–4762.
11. Corma, A.; Garcia, H. Adv. Synth. Catal. 2006, 348, 1391–1412.
12. Baleiza˜o, C.; Garcia, H. Chem. Rev. 2006, 106, 3987–4043.
13. Li, C.; Zhang, H.; Jiang, D.; Yang, Q. Chem. Commun. 2007, 547–558.
14. Palucki, M.; Finney, N. S.; Pospisil, P. J.; Gu¨ler, M. L.; Ishida, T.; Jacobsen, E. N.
J.Am. Chem. Soc. 1998, 120, 948–954.
15. Zhang, H.; Zhang, Y.; Li, C. J. Catal. 2006, 238, 369–381.
16. Kureshy, R. I.; Ahmad, I.; Khan, N. H.; Abdi, S. H. R.; Pathak, K.; Jasra, R. V.
Tetrahedron: Asymmetry 2005, 16, 3562–3569.
17. Kureshy, R. I.; Ahmad, I.; Khan, N. H.; Abdi, S. H. R.; Pathak, K.; Jasra, R. V. J. Catal.
2006, 238, 134–141.
18. Lou, L.-L.; Yu, K.; Ding, F.; Zhou, W.; Peng, X.; Liu, S. Tetrahedron Lett. 2006, 47,
6513–6516.
4. Conclusions
19. Lou, L.-L.; Yu, K.; Ding, F.; Peng, X.; Dong, M.; Zhang, C.; Liu, S. J. Catal. 2007, 249,
102–110.
20. Kim, G.-J.; Shin, J.-H. Tetrahedron Lett. 1999, 40, 6827–6830.
21. Zhao, D.; Zhao, J.; Zhao, S.; Wang, W. J. Inorg. Organomet. Polym. 2007, 17, 653–
659.
22. Yu, K.; Lou, L.-L.; Ding, F.; Wang, S.; Wang, Z.; Liu, S. Catal. Commun. 2006, 7,
170–172.
23. Yu, K.; Lou, L.-L.; Lai, C.; Wang, S.; Ding, F.; Liu, S. Catal. Commun. 2006, 7, 1057–
1060.
24. Thomas, J. M.; Maschmeyer, T.; Johnson, B. F. G.; Shephard, D. S. J. Mol. Catal. A:
Chem. 1999, 141, 139–144.
25. Raja, R.; Thomas, J. M.; Jones, M. D.; Johnson, B. F. G.; Vaughan, D. E. W. J. Am.
Chem. Soc. 2003, 125, 14982–14983.
26. Larrow, J. F.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org. Chem.
1994, 59, 1939–1942.
27. Zhang, H.; Xiang, S.; Xiao, J.; Li, C. J. Mol. Catal. A: Chem. 2005, 238,
175–184.
Two chiral Mn(III) salen complexes were synthesized from dif-
ferent chiral diamines and anchored through 3-mercaptopropyl-
trimethoxysilane onto a series of mesoporous materials with the
pore sizes varied on the angstrom length-scale. The as-synthesized
catalysts were characterized by XRD, FTIR, DR UV–vis, and N2
sorption, and the results indicated that the chiral Mn(III) salen
complexes were immobilized on the inner surface of the parent
supports. The influence of 3-mercaptopropyltrimethoxysilane
dosage on the catalytic performance of immobilized chiral Mn(III)
salen catalysts was studied, and the optimum 3-mercaptopropyl-
trimethoxysilane dosage in the preparation of heterogeneous cat-
alysts based on 16MCM-41 and 16MCM-48 was determined.
Furthermore, the effect of the fine-tuning of pore size on the per-
formance of heterogeneous catalysts was discussed. In general, the
heterogeneous catalysts that immobilized onto the large-pore
mesoporous supports exhibited higher activity, and the compatible
pore size with substrate may be responsible for improved enan-
tioselectivity in olefin epoxidation.
28. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature 1992,
359, 710–712.
29. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.;
Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.;
Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834–10843.
30. Yu, K.; Gu, Z.; Ji, R.; Lou, L.-L.; Ding, F.; Zhang, C.; Liu, S. J. Catal. 2007, 252,
312–320.
31. Minutolo, F.; Pini, D.; Petri, A.; Salvadori, P. Tetrahedron: Asymmetry 1996, 7,
2293–2302.
32. Casiraghi, G.; Casnati, G.; Cornia, M.; Pochini, A.; Puglia, G.; Sartori, G.; Ungaro,
R. J. Chem. Soc., Perkin Trans. 1 1978, 318–321.
Acknowledgements
33. Canali, L.; Cowan, E.; Deleuze, H.; Gibson, C. L.; Sherrington, D. C. J. Chem. Soc.,
Perkin Trans. 1 2000, 2055–2066.
34. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.;
Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603–619.
This work was supported by the National Natural Science
Foundation of China (grant 20773069) and the National Key Tech-
nologies R&D Program of China (grant 2006BAC02A12).