Paper
Catalysis Science & Technology
attractive tool for biotechnological applications and, together
with the set-up of an efficient expression system in E. coli,12
as a complete biocatalytic process for the synthesis of fairly
high amounts of enantiopure D-aspartate.
9 T. Johannes, M. R. Simurdiak and H. Zhao, Biocatalysis.
Encyclopedia of Chemical Processing, ed. Taylor & Francis,
2006, pp. 101–110.
10 T. Davids, M. Schmidt, D. Bottcher and U. T. Bornscheuer,
Strategies for the discovery and engineering of enzymes for
biocatalysis, Curr. Opin. Chem. Biol., 2013, 17, 215–220.
11 H. Sakuraba, K. Yoneda, I. Asai, H. Tsuge, N. Katunuma and
Abbreviations
T. Oshima, Structure of -aspartate oxidase from the hyper-
thermophilic archaeon Sulfolobus tokodaii, Biochim. Biophys.
Acta, 2008, 1784, 563–571.
L
CLEA
DAAO
LAAO
LASPO
cross-linked enzyme aggregates
D-amino acid oxidase (EC 1.4.3.3)
L-amino acid oxidase (EC 1.4.3.2)
L-aspartate oxidase (EC 1.4.3.16)
12 D. Bifulco, L. Pollegioni, D. Tessaro, S. Servi and G. Molla, A
thermostable -aspartate oxidase: a new tool for biotechno-
logical application, Appl. Microbiol. Biotechnol., 2013, 97(16),
7285–7295.
L
StLASPO Sulfolobus tokodaii L-aspartate oxidase
ee enantiomeric excess
13 M. Mortarino, A. Negri, G. Tedeschi, T. Simonic, S. Duga,
H. G. Gasses and S. Ronchi,
Escherichia coli. I. Characterization of coenzyme binding and
product inhibition, Eur. J. Biochem., 1996, 239, 418–426.
L
-aspartate oxidase from
Acknowledgements
This work was supported by grants from Fondo di Ateneo per
la Ricerca to L. Pollegioni and L. Piubelli. The authors
gratefully acknowledge PRIN 2010–2011 NANO Molecular
Technologies for Drug Delivery – NANOMED prot. 2010
FPTBSH and the support from Consorzio Interuniversitario
per le Biotecnologie (CIB).
14 G. Tedeschi, A. Negri, M. Mortarino, F. Ceciliani, T. Simonic,
L. Faotto and S. Ronchi,
coli. II. Interaction with C4 dicarboxylic acid and identification
of a novel -aspartate: fumarate oxidoreductase activity,
L
-aspartate oxidase from Escherichia
L
Eur. J. Biochem., 1996, 239, 427–433.
15 S. Servi, D. Tessaro and G. Pedrocchi-Fantoni, Chemo-
enzymatic deracemization methods for the preparation of
enantiopure non-natural α-amino acids, Coord. Chem. Rev.,
2008, 252, 715–726.
References
1 L. Pollegioni, P. Motta and G. Molla, -amino acid oxidase as
L
biocatalyst: a dream too far, Appl. Microbiol. Biotechnol.,
2013, 97(21), 9323–9341.
2 L. Pollegioni, G. Molla, S. Sacchi, E. Rosini, R. Verga and
M. S. Pilone, Properties and applications of microbial
16 O. Barbosa, R. Torres, C. Ortiz, A. Berenguer-Murcia,
R. C. Rodrigues and R. Fernandez-Lafuente, Heterofunctional
supports in enzyme immobilization: from traditional
immobilization protocols to opportunities in tuning enzyme
properties, Biomacromolecules, 2013, 14, 2433–2462.
17 D. A. Covan and R. Fernandez-Lafuente, Enhancing the
functional properties of thermophilic enzymes by chemical
modification and immobilization, Enzyme Microb. Technol.,
2011, 49, 326–346.
D
-amino acid oxidases: current state and perspectives, Appl.
Microbiol. Biotechnol., 2008, 78(1), 1–16.
3 L. Pollegioni and G. Molla, New biotech applications from
evolved
D
-amino acid oxidases, Trends Biotechnol., 2011, 29,
276–283.
4 Y. Mutaguchi, T. Ohmori, H. Sakuraba, K. Yoneda, K. Doi
and T. Ohshima, Visible wavelength spectrophotometric
18 R. C. Rodrigues, C. Ortiz, A. Berenguer-Murcia and
R. Fernandez-Lafuente, Modifying enzyme activity and
selectivity by immobilization, Chem. Soc. Rev., 2013, 42,
6290–6307.
assay on
L
-aspartate and -aspartate using hyperthermophilic
D
enzyme systems, Anal. Chem., 2011, 409, 1–6.
5 R. L. Hanson, R. N. Patel and L. J. Szarka, Transformation of
19 R. A. Sheldon, M. Sorgedrager and M. H. A. Janssen, Use of
cross-linked enzyme aggregates (CLEAs) for performing bio-
transformations, Chim. Oggi, 2007, 25, 48–52.
N-ε-Z-
L
-Lysine to Z-
L
-Oxylysine Using
L
-Amino Acid Oxidase
from Providencia alcalifaciens and
L
-2-Hydroxy-isocaproate
Dehydrogenase from Lactobacillus confusus, Ann. N. Y. Acad.
Sci., 1992, 672, 619.
6 K. Isobe and S. Nagasawa, Characterization of
20 R. A. Sheldon, Cross-Linked Enzyme Aggregates (CLEAs):
stable and recyclable biocatalysts, Biochem. Soc. Trans.,
2007, 35(6), 1583–1587.
N-α-benzyloxycarbonyl-
L
-lysine oxidizing enzyme from
21 C. M. Harris, L. Pollegioni and S. Ghisla, pH and
Rhodococcus sp. AIU Z-35-1, J. Biosci. Bioeng., 2007, 104(3),
218–223.
kinetic isotope effect in
D
-amino acid oxidase catalysis,
Evidence for concerted mechanism in substrate
a
7 S. Singh, B. K. Gogoi and R. L. Bezbaruaha, Optimization of
dehydrogenation via hydride transfer, Eur. J. Biochem.,
2001, 268, 5504–5520.
medium and cultivation conditions for -amino acid oxidase
L
production by Aspergillus fumigatus, Can. J. Microbiol.,
2009, 55(9), 1096–1102.
22 C. M. Harris, G. Molla, M. S. Pilone and L. Pollegioni,
Studies on the reaction mechanism of Rhodotorula gracilis
8 B. Gueke and W. Hummel, A new bacterial
L
-amino acid
D
-amino-acid oxidase: role of the highly conserved Tyr-223
oxidase with a broad substrate specificity: purification and
characterization, Enzyme Microb. Technol., 2002, 31, 77–87.
on substrate binding and catalysis, J. Biol. Chem., 1999, 274,
36233–36240.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2014