Inorganic Chemistry
Article
(3) Semonin, O. E.; Luther, J. M.; Beard, M. C. Quantum Dots for
Next-Generation Photovoltaics. Mater. Today 2012, 15, 508−515.
(4) Lewis, N. S. Toward Cost-Effective Solar Energy Use. Science
2007, 315, 798−801.
the Composition of the Dot’s Ligand Shell. J. Am. Chem. Soc. 2017, 139,
4246−4249.
(25) Chang, C. M.; Orchard, K. L.; Martindale, B. C. M.; Reisner, E.
Ligand Removal from CdS Quantum Dots for Enhanced Photocatalytic
H 2 Generation in PH Neutral Water. J. Mater. Chem. A 2016, 4, 2856−
2862.
́
(5) Shirasaki, Y.; Supran, G. J.; Bawendi, M. G.; Bulovic, V. Emergence
of Colloidal Quantum-Dot Light-Emitting Technologies. Nat.
Photonics 2013, 7, 13−23.
(6) Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie,
S. In Vivo Molecular and Cellular Imaging with Quantum Dots. Curr.
Opin. Biotechnol. 2005, 16, 63−72.
́
(26) Samadpour, M.; Boix, P. P.; Gimenez, S.; Iraji Zad, A.;
́
Taghavinia, N.; Mora-Sero, I.; Bisquert, J. Fluorine Treatment of
TiO2 for Enhancing Quantum Dot Sensitized Solar Cell Performance. J.
Phys. Chem. C 2011, 115, 14400−14407.
(7) Kairdolf, B. A.; Smith, A. M.; Stokes, T. H.; Wang, M. D.; Young,
A. N.; Nie, S. Semiconductor Quantum Dots for Bioimaging and
Biodiagnostic Applications. Annu. Rev. Anal. Chem. 2013, 6, 143−162.
(8) Hu, M. Z.; Zhu, T. Semiconductor Nanocrystal Quantum Dot
Synthesis Approaches Towards Large-Scale Industrial Production for
Energy Applications. Nanoscale Res. Lett. 2015, 10, 469.
(9) Pu, Y.; Cai, F.; Wang, D.; Wang, J.-X.; Chen, J.-F. Colloidal
Synthesis of Semiconductor Quantum Dots toward Large-Scale
Production: A Review. Ind. Eng. Chem. Res. 2018, 57, 1790−1802.
(10) Bukowski, T. J.; Simmons, J. H. Quantum Dot Research: Current
State and Future Prospects. Crit. Rev. Solid State Mater. Sci. 2002, 27,
119−142.
(11) Johansen, J.; Stobbe, S.; Nikolaev, I. S.; Lund-Hansen, T.;
Kristensen, P. T.; Hvam, J. M.; Vos, W. L.; Lodahl, P. Size Dependence
of the Wavefunction of Self-Assembled InAs Quantum Dots from
Time-Resolved Optical Measurements. Phys. Rev. B: Condens. Matter
Mater. Phys. 2008, 77, 073303.
(27) Shahid, R.; Gorlov, M.; El-Sayed, R.; Toprak, M. S.; Sugunan, A.;
Kloo, L.; Muhammed, M. Microwave Assisted Synthesis of ZnS
Quantum Dots Using Ionic Liquids. Mater. Lett. 2012, 89, 316−319.
(28) Stein, J. L.; Mader, E. A.; Cossairt, B. M. Luminescent InP
Quantum Dots with Tunable Emission by Post-Synthetic Modification
with Lewis Acids. J. Phys. Chem. Lett. 2016, 7, 1315−1320.
(29) Talapin, D. V.; Murray, C. B. PbSe Nanocrystal Solids for N- and
p-Channel Thin Film Field-Effect Transistors. Science 2005, 310, 86−
89.
(30) Wall, M. A.; Cossairt, B. M.; Liu, J. T. C. Reaction-Driven
Nucleation Theory. J. Phys. Chem. C 2018, 122, 9671−9679.
(31) Knauf, R. R.; Lennox, J. C.; Dempsey, J. L. Quantifying Ligand
Exchange Reactions at CdSe Nanocrystal Surfaces. Chem. Mater. 2016,
28, 4762−4770.
(32) Anderson, N. C.; Hendricks, M. P.; Choi, J. J.; Owen, J. S. Ligand
Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals:
Spectroscopic Observation of Facile Metal-Carboxylate Displacement
and Binding. J. Am. Chem. Soc. 2013, 135, 18536−18548.
(33) Weiss, E. A. Organic Molecules as Tools to Control the Growth,
Surface Structure, and Redox Activity of Colloidal Quantum Dots. Acc.
Chem. Res. 2013, 46, 2607−2615.
(34) Zhou, Y.; Buhro, W. E. Reversible Exchange of L-Type and
Bound-Ion-Pair X-Type Ligation on Cadmium Selenide Quantum
Belts. J. Am. Chem. Soc. 2017, 139, 12887−12890.
(35) Kessler, M. L.; Starr, H. E.; Knauf, R. R.; Rountree, K. J.;
Dempsey, J. L. Exchange Equilibria of Carboxylate-Terminated Ligands
at PbS Nanocrystal Surfaces. Phys. Chem. Chem. Phys. 2018, 20, 23649−
23655.
(36) Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J.
C.; Hens, Z. Size-Tunable, Bright, and Stable PbS Quantum Dots: A
Surface Chemistry Study. ACS Nano 2011, 5, 2004−2012.
(37) Wheeler, L. M.; Sanehira, E. M.; Marshall, A. R.; Schulz, P.; Suri,
M.; Anderson, N. C.; Christians, J. A.; Nordlund, D.; Sokaras, D.; Kroll,
T.; et al. Targeted Ligand-Exchange Chemistry on Cesium Lead Halide
Perovskite Quantum Dots for High-Efficiency Photovoltaics. J. Am.
Chem. Soc. 2018, 140, 10504−10513.
(38) Zhou, L.; Yu, K.; Yang, F.; Cong, H.; Wang, N.; Zheng, J.; Zuo,
Y.; Li, C.; Cheng, B.; Wang, Q. Insight into the Effect of Ligand-
Exchange on Colloidal CsPbBr3 Perovskite Quantum Dot/Mesopo-
rous-TiO2 Composite-Based Photodetectors: Much Faster Electron
Injection. J. Mater. Chem. C 2017, 5 (25), 6224−6233.
(12) Wang, F.; Wang, Y.; Liu, Y.-H.; Morrison, P. J.; Loomis, R. A.;
Buhro, W. E. Two-Dimensional Semiconductor Nanocrystals: Proper-
ties, Templated Formation, and Magic-Size Nanocluster Intermediates.
Acc. Chem. Res. 2015, 48, 13−21.
(13) Jia, G.; Xu, S.; Wang, A. Emerging Strategies for the Synthesis of
Monodisperse Colloidal Semiconductor Quantum Rods. J. Mater.
Chem. C 2015, 3, 8284−8293.
̀
(14) Reiss, P.; Protiere, M.; Li, L. Core/Shell Semiconductor
Nanocrystals. Small 2009, 5, 154−168.
(15) Hines, D. A.; Kamat, P. V. Recent Advances in Quantum Dot
Surface Chemistry. ACS Appl. Mater. Interfaces 2014, 6, 3041−3057.
(16) Owen, J. The Coordination Chemistry of Nanocrystal Surfaces.
Science 2015, 347, 615−616.
(17) Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.;
Sadtler, B.; Alivisatos, A. P. Seeded Growth of Highly Luminescent
CdSe/CdS Nanoheterostructures with Rod and Tetrapod Morpholo-
gies. Nano Lett. 2007, 7, 2951−2959.
(18) Kim, K.; Yoo, D.; Choi, H.; Tamang, S.; Ko, J.-H.; Kim, S.; Kim,
Y.-H.; Jeong, S. Halide−Amine Co-Passivated Indium Phosphide
Colloidal Quantum Dots in Tetrahedral Shape. Angew. Chem., Int. Ed.
2016, 55, 3714−3718.
(19) Park, J.; Kim, S.-W. CuInS2/ZnS Core/Shell Quantum Dots by
Cation Exchange and Their Blue-Shifted Photoluminescence. J. Mater.
Chem. 2011, 21, 3745−3750.
(20) Wang, X.-S.; Dykstra, T. E.; Salvador, M. R.; Manners, I.; Scholes,
G. D.; Winnik, M. A. Surface Passivation of Luminescent Colloidal
Quantum Dots with Poly(Dimethylaminoethyl Methacrylate) through
a Ligand Exchange Process. J. Am. Chem. Soc. 2004, 126, 7784−7785.
(21) Groeneveld, E.; Witteman, L.; Lefferts, M.; Ke, X.; Bals, S.; Van
Tendeloo, G.; de Mello Donega, C. Tailoring ZnSe−CdSe Colloidal
Quantum Dots via Cation Exchange: From Core/Shell to Alloy
Nanocrystals. ACS Nano 2013, 7, 7913−7930.
(22) Petryayeva, E.; Algar, W. R.; Medintz, I. L. Quantum Dots in
Bioanalysis: A Review of Applications across Various Platforms for
Fluorescence Spectroscopy and Imaging. Appl. Spectrosc. 2013, 67,
215−252.
(23) Merg, A. D.; Zhou, Y.; Smith, A. M.; Millstone, J. E.; Rosi, N. L.
Ligand Exchange for Controlling the Surface Chemistry and Properties
of Nanoparticle Superstructures. ChemNanoMat 2017, 3, 745−749.
(24) Zhang, Z.; Edme, K.; Lian, S.; Weiss, E. A. Enhancing the Rate of
Quantum-Dot-Photocatalyzed Carbon−Carbon Coupling by Tuning
(39) Gary, D. C.; Flowers, S. E.; Kaminsky, W.; Petrone, A.; Li, X.;
Cossairt, B. M. Single-Crystal and Electronic Structure of a 1.3 nm
Indium Phosphide Nanocluster. J. Am. Chem. Soc. 2016, 138, 1510−
1513.
(40) De Nolf, K.; Cosseddu, S. M.; Jasieniak, J. J.; Drijvers, E.; Martins,
J. C.; Infante, I.; Hens, Z. Binding and Packing in Two-Component
Colloidal Quantum Dot Ligand Shells: Linear versus Branched
Carboxylates. J. Am. Chem. Soc. 2017, 139, 3456−3464.
(41) De Roo, J.; Yazdani, N.; Drijvers, E.; Lauria, A.; Maes, J.; Owen, J.
S.; Van Driessche, I.; Niederberger, M.; Wood, V.; Martins, J. C.; et al.
Probing Solvent−Ligand Interactions in Colloidal Nanocrystals by the
NMR Line Broadening. Chem. Mater. 2018, 30, 5485−5492.
(42) Cho, E.; Jang, H.; Lee, J.; Jang, E. Modeling on the Size
Dependent Properties of InP Quantum Dots: A Hybrid Functional
Study. Nanotechnology 2013, 24, 215201.
(43) Lee, D. G.; Sadar, M. H. The Basicity of Aliphatic Carboxylic
Acids. Can. J. Chem. 1976, 54, 3464−3469.
G
Inorg. Chem. XXXX, XXX, XXX−XXX