observed in the cyclohexene hydrogenation by classical sup-
6
14 D. Zhao, Z. Fei, J. Geldbach Tilmann, R. Scopelliti and J. Dyson
Paul, J. Am. Chem. Soc., 2004, 126, 15876–15882.
3
ported Ni catalysts at 60 1C and 5 atm.
1
1
1
1
5 A. J. Bruss, M. A. Gelesky, G. Machado and J. Dupont, J. Mol.
Catal. A: Chem., 2006, 252, 212–218.
6 G. S. Fonseca, J. B. Domingos, F. Nome and J. Dupont, J. Mol.
Catal. A: Chem., 2006, 248, 10–16.
7 A. P. Umpierre, G. Machado, G. H. Fecher, J. Morais and
J. Dupont, Adv. Synth. Catal., 2005, 347, 1404–1412.
8 M. A. Gelesky, A. P. Umpierre, G. Machado, R. R. B. Correia, W.
C. Magno, J. Morais, G. Ebeling and J. Dupont, J. Am. Chem.
Soc., 2005, 127, 4588–4589.
Conclusions
The simple decomposition of [bis(1,5-cyclooctadiene) nickel(0)]
organometallic precursor dissolved in 1-alkyl-3-methylimida-
zolium N-bis(trifluoromethane sulfonyl) amide ionic liquids
yields Ni nanoparticles probably composed of Ni metal core
with a cap of NiO. The diameter, size-distribution and the
metal/metal oxide ratio depend on the structural arrangement
of the salt. There are slight decreases in both the nanoparticle
diameter and the size-distribution with an increase of the
carbon numbers of the alkyl side-chain of the imidazolium
1
9 L. M. Rossi, J. Dupont, G. Machado, P. F. P. Fichtner, C. Radtke,
I. J. R. Baumvol and S. R. Teixeira, J. Braz. Chem. Soc., 2004, 15,
9
04–910.
20 E. T. Silveira, A. P. Umpierre, L. M. Rossi, G. Machado,
J. Morais, G. V. Soares, I. L. R. Baumvol, S. R. Teixeira, P. F.
P. Fichtner and J. Dupont, Chem.–Eur. J., 2004, 10, 3734–3740.
2
1 G. S. Fonseca, J. D. Scholten and J. Dupont, Synlett, 2004,
1525–1528.
cation up to 14 carbons (from 5.9
Æ
1.4 nm for
[
C C Im] Á NTf to 5.1 Æ 0.9 nm for [C C Im] Á NTf and then
22 L. M. Rossi, G. Machado, P. F. P. Fichtner, S. R. Teixeira and
J. Dupont, Catal. Lett., 2004, 92, 149–155.
1
4
2
1
14
2
an increase in diameter and size-distribution as observed for
the material in [C
2
3 G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner, S. R. Teixeira
and J. Dupont, Chem.–Eur. J., 2003, 9, 3263–3269.
1
C
16Im] Á NTf ionic liquid (5.5 Æ 1.1 nm).
2
SAXS data show an increase in the range order of the salts
indicating a synergic organization effect, i.e., more regular
with a smaller diameter and size-distribution nanoparticles
were obtained in the more ‘‘pre-organized’’ ionic liquids. The
FT’s of the EXAFS signals display several peaks suggesting
the existence of a medium range order around the Ni particles.
24 C. W. Scheeren, G. Machado, J. Dupont, P. F. P. Fichtner and
S. R. Texeira, Inorg. Chem., 2003, 42, 4738–4742.
2
5 K. Anderson, S. Cortinas Fernandez, C. Hardacre and P. C. Marr,
Inorg. Chem. Commun., 2003, 7, 73–76.
26 S. M. Chen, Y. D. Liu and G. Z. Wu, Nanotechnology, 2005, 16,
2360–2364.
2
7 S. Y. Gao, H. J. Zhang, X. M. Wang, W. P. Mai, C. Y. Peng and
L. H. Ge, Nanotechnology, 2005, 16, 1234–1237.
[
C C Im] Á NTf and [C C Im] Á NTf have two broad peaks
1
14
2
1
16
2
28 J. Huang, T. Jiang, B. X. Han, H. X. Gao, Y. H. Chang, G. Y.
Zhao and W. Z. Wu, Chem. Commun., 2003, 1654–1655.
˚
pointing at ca.1.5 and 2.5 A, whereas in the case of
2
9 L. S. Ott, M. L. Cline, M. Deetlefs, K. R. Seddon and R. G. Finke,
J. Am. Chem. Soc., 2005, 127, 5758–5759.
0 Y. Wang and H. Yang, Chem. Commun., 2006, 2545–2547.
1 R. Marcilla, M. L. Curri, P. D. Cozzoli, M. T. Martinez, I. Loinaz,
H. Grande, J. A. Pomposo and D. Mecerreyes, Small, 2006, 2,
[
C C Im] Á NTf , [C C Im] Á NTf and [C C Im] Á NTf the
1
4
2
1
8
2
1
10
2
intensity of the first peak decreases and there is a narrowing
as well as a contraction in the distances. The IL–Ni colloidal
dispersions can be used as catalysts for the biphasic hydro-
genation of olefins.
3
3
5
07–512.
2 B. S. Lee, Y. S. Chi, J. K. Lee, I. S. Choi, C. E. Song, S. K.
3
3
Namgoong and S. G. Lee, J. Am. Chem. Soc., 2004, 126,
4
80–481.
3 J. Dupont and P. A. Z. Suarez, Phys. Chem. Chem. Phys., 2006, 8,
441–2452.
Acknowledgements
2
We are indebted to the staff of LNLS for operating the storage
ring and for assistance during the experiments at the XAS
beam line. The beam time was supported by LNLS under the
proposals XAFS1 4638 and SAXS1 4618.
3
3
4 J. Dupont, J. Braz. Chem. Soc., 2004, 15, 341–350.
5 C. S. Consorti, P. A. Z. Suarez, R. F. de Souza, R. A. Burrow, D.
H. Farrar, A. J. Lough, W. Loh, L. H. M. da Silva and J. Dupont,
J. Phys. Chem. B, 2005, 109, 4341–4349.
6 F. C. Gozzo, L. S. Santos, R. Augusti, C. S. Consorti, J. Dupont
and M. N. Eberlin, Chem.–Eur. J., 2004, 10, 6187–6193.
7 M. Antonietti, D. B. Kuang, B. Smarsly and Z. Yong, Angew.
Chem., Int. Ed., 2004, 43, 4988–4992.
3
3
References
1
2
3
G. Schmid, Endeavour, 1990, 14, 172–178.
C. A. Stowell and B. A. Korgel, Nano Lett., 2005, 5, 1203–1207.
A. Roucoux, J. Schulz and H. Patin, Adv. Synth. Catal., 2003, 345,
38 G. Clavel, J. Larionova, Y. Guari and C. Guerin, Chem.–Eur. J.,
2006, 12, 3798–3804.
39 S. A. Meiss, M. Rohnke, L. Kienle, S. Z. El Abedin, F. Endres and
J. Janek, ChemPhysChem, 2007, 8, 50–53.
40 S. Z. El Abedin, E. M. Moustafa, R. Hempelmann, H. Natter and
F. Endres, ChemPhysChem, 2006, 7, 1535–1543.
41 S. Z. El Abedin, E. M. Moustafa, R. Hempelmann, H. Natter and
F. Endres, Electrochem. Commun., 2005, 7, 1111–1116.
42 C. M. Gordon, J. D. Holbrey, A. R. Kennedy and K. R. Seddon,
J. Mater. Chem., 1998, 8, 2627–2636.
43 S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys., 2004, 120,
1855–1863.
44 S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys., 2005, 122,
024511.
45 Y. H. Leng, Y. H. Zhang, T. Liu, M. Suzuki and X. G. Li,
Nanotechnology, 2006, 17, 1797–1800.
46 G. J. Cheng, V. F. Puntes and T. Guo, J. Colloid Interface Sci.,
2006, 293, 430–436.
2
22–229.
L. S. Ott and R. G. Finke, Coord. Chem. Rev., 2007, 251,
075–1100.
A. Roucoux, J. Schulz and H. Patin, Chem. Rev., 2002, 102,
757–3778.
D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem., Int. Ed., 2005,
4, 7852–7872.
4
5
6
7
8
9
1
3
4
C. Burda, X. B. Chen, R. Narayanan and M. A. El-Sayed, Chem.
Rev., 2005, 105, 1025–1102.
S. U. Son, Y. Jang, K. Y. Yoon, E. Kang and T. Hyeon, Nano
Lett., 2004, 4, 1147–1151.
S. W. Kim, J. Park, Y. Jang, Y. Chung, S. Hwang, T. Hyeon and
Y. W. Kim, Nano Lett., 2003, 3, 1289–1291.
0 F. Endres and S. Z. El Abedin, Phys. Chem. Chem. Phys., 2006, 8,
1
2101–2116.
1
1
1 J. Dupont and P. Migowski, Chem.–Eur. J., 2007, 13, 32–39.
2 J. Dupont, G. S. Fonseca, A. P. Umpierre, P. F. P. Fichtner and S.
R. Teixeira, J. Am. Chem. Soc., 2002, 124, 4228–4229.
47 M. Paillet, V. Jourdain, P. Poncharal, J. L. Sauvajol, A. Zahab,
J. C. Meyer, S. Roth, N. Cordente, C. Amiens and B. Chaudret,
J. Phys. Chem. B, 2004, 108, 17112–17118.
1
3 D. B. Zhao, Z. F. Fei, W. H. Ang and P. J. Dyson, Small, 2006, 2,
48 N. Cordente, C. Amiens, B. Chaudret, M. Respaud, F. Senocq and
M. J. Casanove, J. Appl. Phys., 2003, 94, 6358–6365.
879–883.
4
820 | Phys. Chem. Chem. Phys., 2007, 9, 4814–4821
This journal is ꢀc the Owner Societies 2007