474
I. Hutchinson et al. / Bioorg. Med. Chem. Lett. 13 (2003) 471–474
50), 4.73 (2H, s, NH2); 7b: Yield 68%, H NMR (DMSO-d6)
8.12 (1H, d, J=2.3 Hz, H-20), 8.05 (1H, dd, J=8.9, 2.3 Hz, H-
60), 7.93 (1H, d, J=7.5, 1.5 Hz, H-7), 7.39 (2H, m, H-5, H-6),
6.94 (1H, d, J=8.9 Hz, H-50), 6.91 (2H, s, NH2); 7c: Yield
65%, 1H NMR (DMSO-d6) 8.13 (1H, dd, J=9.0, 5.8 Hz, H-7),
8.10 (1H, d, J=2.3 Hz, H-20), 8.00 (1H, dd, J=8.8, 2.3 Hz, H-
60), 7.80 (1H, dd, J=9.0, 2.5 Hz, H-4), 7.31 (1H, dt, J=9.0,
2.5 Hz, H-6), 6.94 (1H, d, J=8.8 Hz, H-50), 6.88 (2H, s, NH2);
1
Acknowledgements
The authors are grateful to Cancer Research UK for a
Programme Grant to the Experimental Cancer Chemo-
therapy Research Group at Nottingham. We also thank
the NCI Developmental Therapeutics Program (Dr.
Bob Schultz) for in vitro 60-cell line analysis of our
compounds.
1
7d: Yield 58%, H NMR (DMSO-d6) 8.06 (1H, dd, J=10.8,
2.5 Hz, H-7), 8.04 (1H, dd, J=8.8, 2.5 Hz, H60), 8.00 (1H, d,
J=2.5 Hz, H-20), 7.99 (1H, dd, J=9.0, 5.0 Hz, H-4), 7.39 (1H,
dt, J=9.0, 2.5 Hz, H-5), 6.94 (1H, d, J=8.8 Hz, H-50), 6.86
(2H, s, NH2).
References and Notes
12. General experimental method for compounds 9a–d. (Tri-
methylsilyl)acetylene (1.5 mol equiv) was added to a mixture
of the 2-(4-amino-3-iodophenyl)benzothiazole,2,8 dichlorobis
(triphenylphosphine)palladium(II) (0.05 mol equiv) and cop-
per(I) iodide (0.1 mol equiv) in triethylamine at ambient tem-
perature with stirring. The mixture was heated at reflux for
16 h then allowed to cool and the triethylamine removed in
vacuo. The residue was partitioned between ethyl acetate and
water then the layers separated. The aqueous layer was
extracted using further ethyl acetate (ꢂ2), then dried
(MgSO4), filtered and concentrated to yield the crude pro-
duct. Purification by flash column chromatography (1%
methanol in chloroform as eluant) gave the pure (tri-
methyl)silylethynyl-substituted benzothiazole (8a–d) in good
yields. The benzothiazole 8 was then dissolved in a mixture of
THF and methanol (4:1) and potassium carbonate (1.1 mol
equiv) added to the solution, which was then stirred at
ambient temperature for 18 h. THF and methanol were
removed in vacuo, and the residue dissolved in dichloro-
methane. After washing with water and brine the organic
solution was concentrated to give the pure product (9a–d) in
1. Bradshaw, T. D.; Chua, M.-S.; Browne, H. L.; Trapani, V.;
Sausville, E. A.; Stevens, M. F. G. Brit. J. Cancer. 2002, 86,
1348.
2. Shi, D.-F.; Bradshaw, T. D.; Wrigley, S.; McCall, C. J.;
Lelieveld, P.; Fichtner, I.; Stevens, M. F. G. J. Med. Chem.
1996, 39, 3375.
3. Bradshaw, T. D.; Wrigley, S.; Shi, D.-F.; Schultz, R. J.;
Paull, K. D.; Stevens, M. F. G. Brit. J. Cancer 1998, 77, 745.
4. Bradshaw, T. D.; Shi, D.-F.; Schultz, R. J.; Paull, K. D.;
Kelland, L.; Wilson, A.; Garner, C.; Fiebig, H. H.; Wrigley,
S.; Stevens, M. F. G. Brit. J. Cancer 1998, 78, 421.
5. Bradshaw, T. D.; Stevens, M. F. G.; Westwell, A. D. Curr.
Med. Chem. 2001, 8, 203.
6. Chua, M.-S.; Kashiyama, E.; Bradshaw, T. D.; Stinson,
S. F.; Brantley, E.; Sausville, E. A.; Stevens, M. F. G. Cancer
Res. 2000, 60, 5196.
7. Kashiyama, E.; Hutchinson, I.; Chua, M.-S.; Stinson, S. F.;
Phillips, L. R.; Kaur, G.; Sausville, E. A.; Bradshaw, T. D.;
Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 1999, 42,
4172.
8. Hutchinson, I.; Chua, M.-S.; Browne, H. L.; Trapani, V.;
Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med.
Chem. 2001, 44, 1446.
9. Hutchinson, I.; Stevens, M. F. G.; Westwell, A. D. Tetra-
hedron Lett. 2000, 41, 425.
10. Hutchinson, I.; Jennings, S. A.; Vishnuvajjala, B. R.;
Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2002, 45,
744.
11. General experimental method for compounds 7a–d. A
mixture of the 2-(4-amino-3-iodophenyl)benzothiazole (6a–d)8
and copper (I) cyanide (3 mol equiv) in DMF was heated
under reflux for 4 h. After cooling, DMF was removed in
vacuo and the residue extracted using excess hot ethyl acetate
followed by filtration. The filtrate was concentrated in vacuo
and the crude product recrystallised from ethanol to give the
required 30-cyano substituted product. 7a: Yield 77%, 1H
NMR (CDCl3) 8.11 (1H, d, J=2.2 Hz, H-20), 8.04 (1H, dd,
J=8.8, 2.2 Hz, H-60), 7.98 (1H, dd, J=8.0, 1.3 Hz, H-7), 7.85
(1H, dd, J=7.8, 1.3 Hz, H-4), 7.46 (1H, dt, J=7.8, 1.3 Hz, H-
5), 7.34 (1H, dd, J 8.0, 1.3 Hz, H-6), 6.81 (1H, d, J=8.8 Hz, H-
1
good yield. 9a: Yield 58% (two steps), H NMR (DMSO-d6)
8.07 (1H, dd, J=7.8, 1.4 Hz, H-7), 7.95 (1H, dd, J=8.0,
1.0 Hz, H-4), 7.88 (1H, d, J=2.3 Hz, H-20), 7.83 (1H, dd,
J=8.6, 2.3 Hz, H-60), 7.50 (1H, dt, J=8.0, 1.0 Hz, H-5), 7.39
(1H, dt, J=7.8, 1.1 Hz, H-6), 6.86 (1H, d, J=8.6 Hz, H-50),
6.18 (2H, s, NH2), 4.51 (1H, s, CꢁCH); 9b: Yield 56% (two
steps), H NMR (CDCl3) 8.09 (1H, d, J=2.1 Hz, H-20), 7.94
1
(1H, dd, J=8.6, 2.1 Hz, H-60), 7.62 (1H, dd, J=8.0, 1.1 Hz,
H-7), 7.23 (2H, m, H-5, H-6), 6.77 (1H, d, J=8.6 Hz, H-50),
4.65 (2H, s, NH2), 3.46 (1H, s, CꢁCH); 9c: Yield 62% (two
steps), H NMR (CDCl3) 8.05 (1H, d, J=2.0 Hz, H-20), 7.89
1
(1H, dd, J=8.6, 2.1 Hz, H-60), 7.77 (1H, dd, 6.3, 5.0 Hz, H-7),
7.67 (1H, dd, J=9.8, 2.5 Hz, H-4), 7.11 (1H, dt, J=8.8,
2.5 Hz, H-6), 6.78 (1H, d, J=8.6 Hz, H-50), 4.64 (2H, s,
NH2), 3.46 (1H, s, CꢁCH); 9d: Yield 68% (two steps) 1H
NMR (CDCl3) 8.02 (1H, d, J=2.2 Hz, H-20), 7.92 (1H, dd,
J=8.9, 5.0 Hz, H-4), 7.85 (1H, dd, J=8.5, 2.2 Hz, H-60), 7.53
(1H, dd, J=8.1, 2.6 Hz, H-7), 7.18 (1H, dt, J=8.9, 2.6 Hz, H-
5), 6.77 (1H, d, J=8.5 Hz, H-50), 4.63 (2H, s, NH2), 3.46 (1H,
s, CꢁCH).