SCHEME 1. Synthesis of Disubstituted
Cyclopropane-1,1-dicarboxylates via Telluronium
Ylides
Highly Stereoselective Synthesis of
Trisubstituted Vinylcyclopropane
Derivatives via Arsonium Ylides
Hong Jiang, Xianming Deng, Xiuli Sun,
Yong Tang,* and Li-Xin Dai
State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry,
354 Fenglin Lu, Shanghai 200032, China
addition/cyclization5 such as ylide cyclopropanation6 of
alkylidene malonates is one of the most convenient ways.
In a previous study on the synthesis and application of
cyclopropane derivatives,7 we described a cyclopropana-
tion reaction of arylidene malonates with telluronium
ylides to afford disubstituted cyclopropane 1,1-dicarboxy-
lic esters with good stereoselectivity in high yields
(Scheme 1).8 However, attempts to extend the substrates
to propylidene malonate using telluronium cinnamylide
gave only a trace amount of the desired cyclopropane
(Scheme 1) under the same reaction conditions. There-
fore, we are interested in developing a highly diastereo-
selective ylide cyclopropanation suitable for both alky-
lidene and arylidene malonates. In this paper, we wish
to report the results of our studies on this subject.
Initial study showed that the reaction of telluronium
cinnamylide with propylidene malonate gave a trace
amount of the desired cyclopropane (Scheme 1). Consid-
ering that the match between ylide and substrate is
crucial to the yields as well as the control of stereoselec-
tivity in ylide cyclopropanation,9 we tried to use the
corresponding arsonium ylide10 instead to continue the
study.
Received August 24, 2005
Alkylidene or arylidene malonates reacted with arsonium
allylides to give trans-disubstituted cyclopropane-1,1-dicar-
boxylates with high stereoselectivity in high yields. The
mechanism of the cyclopropanation reactions has also been
investigated.
Vinylcyclopropane 1,1-dicarboxylic esters are very use-
ful synthetic intermediates in construction of cyclopen-
tane skeleton and heterocyclic compounds.1 Although the
cyclopropanation reactions of olefins using the transition-
metal-catalyzed decomposition of diazoalkanes is well-
studied,2 only a few examples were reported for the
preparation of these cyclopropanes, probably because the
regioselectivity control is difficult and the diazoalkanes
bearing two electron-withdrawing groups are substan-
tially less reactive than diazoalkanes both without
electron-withdrawing groups and with one electron-
withdrawing group.3 Of the methods developed for direct
synthesis of these compounds,2a,4 the tandem nucleophilic
Fortunately, we found that the reaction of ethyl pro-
pylidene malonate with arsonium cinnamylide, prepared
in situ by deprotonation of the corresponding arsonium
bromide with KN(Me3Si)2 (0.5 M in THF) at room
temperature, proceeded well in THF to give the desired
cyclopropane with high stereoselectivity in 71% yield
(entry 3, Table 1).
(1) (a) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005,
127, 5764. (b) Pohlhaus, P. D.; Johnson, J. S. J. Org. Chem. 2005, 70,
1057. (c)Young, I. S.; Kerr, M. A. Org. Lett. 2004, 6, 139. (d) Ganton,
M. D.; Kerr, M. A. J. Org. Chem. 2004, 69, 8554. (e) Young, I. S.; Kerr,
M. A. Angew. Chem., Int. Ed. 2003, 42, 3023. (f) England, D. B.; Kuss,
T. D. O.; Keddy, R. G.; Kerr, M. A. J. Org. Chem. 2001, 66, 4704. (g)
Kotsuki, H.; Arimura, K.; Maruzawa, R.; Ohshima, R. Synlett 1999,
650. (h) Beal, R. B.; Dombrowski, M. A.; Snider, B. B. J. Org. Chem.
1986, 51, 4391.
(2) For reviews, see: (a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.;
Charette, A. B. Chem. Rev. 2003, 103, 977. (b) Davies, H. M. L.;
Antoulinakis, E. Org. React. 2001, 57, 1. (c) Doyle, M. P.; Forbes, D.
C. Chem. Rev. 1998, 98, 911.
As shown in Table 1, the reaction was base-dependent.
When LiHMDS was used as a base, both the yield and
(5) (a) Wang, Y.; Zhao, X.; Li, Y.; Lu, L. Tetrahedron Lett. 2004,
7775. (b) Yamazaki, S.; Kataoka, H.; Yamabe, S. J. Org. Chem. 1999,
64, 2367. (c) Trost, B. M.; Tanimori, S.; Dunn, P. T. J. Am. Chem. Soc.
1997, 119, 2735. (d) Funaki, I.; Roel, P. L. B.; Lambertus, T.;
Zwanenburg, B. Tetrahedron 1996, 52, 12253. (e) Kasatkin, A. N.;
Kulak, A. N.; Biktimirov, R. Kh.; Tolstikov, G. A. Tetrahedron Lett.
1990, 31, 4915.
(6) (a) Krief, A.; Provins, L.; Froidbise, A. Synlett 1999, 1936. (b)
Dauben, W. G.; Lewis, T. A. Synlett 1995, 857.
(3) For cyclopropanation with a diazalkanes bearing two electron-
withdrawing groups, see: (a) Wurz, R. P.; Charette, A. B. Org. Lett.
2003, 5, 2327. (b) Mueller, P.; Allenbach, Y.; Robert, E. Tetrahedron:
Asymmetry 2003, 779. (c) Doyle, M. P.; Davies, S. B.; Hu, W. Org. Lett.
2000, 2, 1145. (d) Koskinen, A. M. P.; Munoz, L. J. Org. Chem. 1993,
58, 879. (e) Koskinen, A. M. P.; Hassila, H. J. Org. Chem. 1993, 58,
4479. (f) Taber, D. F.; Amedio, J. C.; Raman, K. J. Org. Chem. 1988,
53, 2984.
(7) (a) Zheng, J.-C.; Liao, W.-W.; Tang, Y.; Sun, X.-L.; Dai, L.-X. J.
Am. Chem. Soc. 2005, 127, 12222. (b) Liao, W.-W.; Li, K.; Tang, Y. J.
Am. Chem. Soc. 2003, 125, 13030. (c) Ye, S.; Huang, Z. Z.; Xia, C. A.;
Tang, Y.; Dai, L.-X. J. Am. Chem. Soc. 2002, 124, 2432. (d) Ye, S.;
Yuan, L.; Huang, Z. Z.; Tang, Y.; Dai, L.-X. J. Org. Chem. 2000, 65,
6257.(e) Ye, S.; Tang, Y.; Dai, L.-X. J. Org. Chem. 2001, 66, 5757. (f)
Ye, S.; Tang, Y.; Dai, L.-X. J. Org. Chem. 2000, 65, 6257.
(8) Tang, Y.; Chi, Z.-F.; Huang, Y.-Z.; Dai, L.-X.; Yu, Y.-H. Tetra-
hedron 1996, 8747.
(4) (a) Ma, S.; Jiao, N.; Yang, Q.; Zheng, Z. J. Org. Chem. 2004, 69,
6463. (b) Ma, S.; Jiao, N.; Zhao, S.; Hou, H. J. Org. Chem. 2002, 67,
2837.
(9) Tang, Y.; Huang, Y.-Z.; Dai, L.-X.; Sun, J.; Xia, W. J. Org. Chem.
1997, 62, 954.
10.1021/jo051782n CCC: $30.25 © 2005 American Chemical Society
Published on Web 11/01/2005
10202
J. Org. Chem. 2005, 70, 10202-10205