Journal of the American Chemical Society
Communication
The RuVO3+ form of the catalyst is also active toward
Notes
electrocatalytic BnOH oxidation, but nanoITO|RuVO3+ is
The authors declare no competing financial interest.
only accessible by RuIVO2+→RuVO3+ oxidation at Ep,a
≈
ACKNOWLEDGMENTS
1.5 V. At this potential, BnOH oxidation overlaps with H2O
oxidation. The overlapping catalytic processes make a detailed
analysis of BnOH oxidation by RuVO3+ difficult in aqueous
solutions. Qualitatively, oxidation currents at 1.5 V increased with
increasing amounts of added BnOH, suggesting that oxidation
of BzOH by nanoITO|RuVO3+ is comparable in rate to the
oxidation of BnOH by nanoITO|RuV(OO)3+. Currently, measure-
ments are underway in propylene carbonate/H2O mixtures in
order to study the catalytic activity of RuVO3+ without
complication from extensive background water oxidation.
■
Funding by the Center for Catalytic Hydrocarbon Function-
alization, an Energy Frontier Research Center (EFRC) funded
by the U.S. Department of Energy (DOE), Office of Science,
Office of Basic Energy Sciences, under Award DE-SC0001298
supporting J.F.H. and the electrochemical experiments of
A.K.V. and the UNC EFRC Solar Fuels, an EFRC funded by
the U.S. DOE, Office of Science, Office of Basic Energy
Sciences, under Award DE-SC0001011 for supporting R.A.B.
and J.J.C. and the material prepatation performed by .A.K.V. is
gratefully acknowledged. Support for the purchase of the
instrumentation from UNC EFRC (Solar Fuels, An EFRC
funded by the U.S. DOE, Office of Science, Office of Basic
Energy Sciences under Award Number DE-SC0001011) and
from UNC Solar Energy Research Center Instrumentation
Facility, funded by the U.S. DOE, Office of Energy Efficiency &
Renewable Energy, under Award Number DE-EE0003188 are
gratefully acknowledged.
Table 1 summarizes kinetic parameters, KIE values, and
turnover numbers from the controlled potential electrolysis
Table 1. Rate Constants, KIE Values, and Turnover
Numbers for RuIVO2+, RuIV(OH)3+, and RuV(OO)3+ on
a
nanoITO
KIE
b
k
cat, M−1 s−1
BnOH-d7
D2O
TON
nanoITO|RuV(OO)3+
nanoITO|RuIV(OH)3+
nanoITO|RuIVO2+
V
28.1
11.1
0.01
2.7
3.0
c
1.1
1.1
c
2440
400
70
REFERENCES
■
(1) (a) Concepcion, J. J.; Jurss, J. W.; Brennaman, K. M.; de Toledo
Patrocinio, A. O.; Hoertz, P. G.; Iha, N. Y. M.; Templeton, J. L.;
Meyer, T. J. Acc. Chem. Res. 2009, 42, 1954. (b) Concepcion, J. J.;
Jurss, J. W.; Templeton, J. L.; Meyer, T. J. J. Am. Chem. Soc. 2008, 130,
16462. (c) McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S.
J. Am. Chem. Soc. 2008, 130, 210. (d) Tseng, H.-W.; Zong, R.;
Muckerman, J. T.; Thummel, R. Inorg. Chem. 2008, 47, 11763.
(e) Hull, J. F.; Balcells, D.; Blakemore, J. D.; Incarvito, C. D.;
Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. J. Am. Chem. Soc. 2009,
131, 8730. (f) Wasylenko, D. J.; Ganesamoorthy, C.; Henderson,
M. A.; Koivisto, B. D.; Osthoff, H. D.; Berlinguette, C. P. J. Am. Chem.
Soc. 2010, 132, 16094. (g) Gao, Y.; Akermark, T.; Liu, J. H.; Sun, L. C.;
Akermark, B. J. Am. Chem. Soc. 2009, 131, 8726. (h) Duan, L. L.; Xu,
Y. H.; Zhang, P.; Wang, M.; Sun, L. C. Inorg. Chem. 2010, 49, 209.
(2) Chen, Z.; Concepcion, J. J.; Jurss, J. W.; Meyer, T. J. J. Am. Chem.
Soc. 2009, 131, 15580.
a
3+/RuIII‑OOH2+
E°(Ru (OO)
)
IV(OH)3+/RuII‑OH2
)
2+
= 0.89 V, E°(Ru
= 0.99 V,
IV
2+
O2+/RuII‑OH2
)
E°(Ru
= 0.90 V at pH 5, I = 0.064 OAc−, 23 0.2 °C.
b
Mols of benzaldehyde produced from mols of catalyst on the
c
electrode surface 10%. Not available.
experiments. By using the advantages of the surface-bound catalyst
on nanoITO, we have been able to identify and exploit a series of
high oxidation state intermediates found in water oxidation cycles.
These results are remarkable in illustrating a cascading increase in
reactivity by over a factor of ∼3000 for BnOH oxidation by a
single catalytic system with E°′ values for 2e−/1H+ couples at pH 5
that vary by only ∼0.1 V. The appearance of contributions to
BnOH oxidation by four different forms of the same catalyst,
RuVO3+, RuV(OO)3+, RuIV(OH)3+, and RuIVO2+, also raises a
warning flag about interpreting data on oxo-catalyzed oxidations
with excess oxidants, notably ceric ammonium sulfate. Under these
conditions, with added water, there could be contributions from
several forms of the catalyst.
Detailed mechanistic analyses are currently under investigation,
but there are indications of what may be exploitable mechanistic
diversity. RuIVO2+ oxidizes BnOH through a discrete
intermediate, presumably by C−H insertion. The appearance of
moderate C−H/C−D KIE values and the absence of an O2 effect
point to hydride transfer or H-atom rebound mechanisms for
nanoITO|RuIV(OH)3+ and nanoITO|RuV(OO)3+. Such pathways
[e.g., RuIV(OH)3++ PhCH2OH → RuII-OH22+ + PhCHOH+;
RuV(OO)3+ + PhCH2OH → RuIII-OOH2+ + PhCHOH+] are
appealing because they avoid high-energy radical intermediates.
(3) Chen, Z.; Concepcion, J. J.; Hull, J. F.; Hoertz, P. G.; Meyer, T. J.
Dalton Trans. 2010, 39, 6950.
(4) Hoertz, P. G.; Chen, Z.; Kent, C. A.; Meyer, T. J. Inorg. Chem.
2010, 49, 8179.
(5) Gallagher, L. A.; Meyer, T. J. J. Am. Chem. Soc. 2001, 123, 5308.
(6) Galopponi, E. Coord. Chem. Rev. 2010, 248, 1283.
(7) Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J.
J. Am. Chem. Soc. 2008, 130, 16462.
(8) Chen, Z.; Vannucci, A. K.; Meyer, T. J. Proc. Natl. Acad. Sci.
U.S.A. 2011, 108, E1461.
(9) Concepcion, J. J.; Tsai, M. K.; Muckerman, J. T.; Meyer, T. J.
J. Am. Chem. Soc. 2010, 132, 1545.
(10) Bryant, J. R.; Matsuo, T.; Mayer, J. M. Inorg. Chem. 2004, 43,
1587.
ASSOCIATED CONTENT
■
S
* Supporting Information
Additional information as noted in the text. This material is
AUTHOR INFORMATION
■
Corresponding Author
3975
dx.doi.org/10.1021/ja210718u | J. Am. Chem. Soc. 2012, 134, 3972−3975