Inorganic Chemistry
Article
used in the fabrication of a photodiode. Inorg. Chim. Acta 2013, 405,
(22) Choudhary, A.; Kumari, S.; Ray, S. Tuning of Catalytic
Property Controlled by the Molecular Dimension of Palladium−Schiff
Base Complexes Encapsulated in Zeolite Y. ACS Omega 2017, 2 (10),
6636−6645.
4
(
93−504.
2) Dieck, H. A.; Heck, R. F. Organophosphinepalladium complexes
as catalysts for vinylic hydrogen substitution reactions. J. Am. Chem.
Soc. 1974, 96 (4), 1133−1136.
(23) Andrade, A. P. S.; Arantes, L. M.; Kadooca, J. Y.; Carvalho, R.
̂
L.; de Fatima, A.; Sabino, A. A. Palladium Complexes with
́
Tetradentate Schiff Bases or their Corresponding Amines: Synthesis
and Application in Heck Reactions. Inorg. Chim. Acta 2016, 1 (5),
886−890.
(24) Jafarian, M.; Rashvand avei, M.; Khakali, M.; Gobal, F.; Rayati,
S.; Mahjani, M. G. DFT and Experimental Study of the Host−Guest
Interactions Effect on the Structure, Properties, and Electro-Catalytic
Activities of N2O2−Ni(II) Schiff-Base Complexes Incorporated into
Zeolite. J. Phys. Chem. C 2012, 116 (34), 18518−18532.
(25) Quayle, W. H.; Peeters, G.; De Roy, G. L.; Vansant, E. F.;
Lunsford, J. H. Synthesis and spectroscopic properties of divalent and
trivalent tris(2,2’-dipyridine)iron complexes in zeolite Y. Inorg. Chem.
1982, 21 (6), 2226−2231.
(26) Bania, K. K.; Bharali, D.; Viswanathan, B.; Deka, R. C.
Enhanced Catalytic Activity of Zeolite Encapsulated Fe(III)-Schiff-
Base Complexes for Oxidative Coupling of 2-Napthol. Inorg. Chem.
2012, 51 (3), 1657−1674.
(27) Marakatti, V. Influence of Alkaline Earth Cation Exchanged X-
Zeolites Towards Ortho-Selectivity in Alkylation of Aromatics: Hard-
Soft-Acid-Base Concept. 2015.
(
3) Paul, S.; Clark, J. H. A highly active and reusable heterogeneous
catalyst for the Suzuki reaction: synthesis of biaryls and polyaryls.
Green Chem. 2003, 5 (5), 635−638.
(
4) Lloyd-Williams, P.; Giralt, E. Atropisomerism, biphenyls and the
Suzuki coupling: peptide antibiotics. Chem. Soc. Rev. 2001, 30 (3),
45−157.
5) Stahl, S. S. Palladium Oxidase Catalysis: Selective Oxidation of
1
(
Organic Chemicals by Direct Dioxygen-Coupled Turnover. Angew.
Chem., Int. Ed. 2004, 43 (26), 3400−3420.
(
6) Xuereb, D. J.; Raja, R. Design strategies for engineering
selectivity in bio-inspired heterogeneous catalysts. Catal. Sci. Technol.
011, 1 (4), 517−534.
7) Thomas, J. M.; Raja, R. Exploiting Nanospace for Asymmetric
2
(
Catalysis: Confinement of Immobilized, Single-Site Chiral Catalysts
Enhances Enantioselectivity. Acc. Chem. Res. 2008, 41 (6), 708−720.
(
8) Nehra, P.; Khungar, B.; Pericherla, K.; Sivasubramanian, S. C.;
Kumar, A. Imidazolium ionic liquid-tagged palladium complex: an
efficient catalyst for the Heck and Suzuki reactions in aqueous media.
Green Chem. 2014, 16 (9), 4266−4271.
(
9) Cai, M.; Huang, Y.; Hu, R.; Song, C. Synthesis of silica-
supported bidentate arsine palladium complex and its catalytic
properties for amidation/butoxycarbonylation of aryl halides. J. Mol.
Catal. A: Chem. 2004, 212 (1), 151−154.
(28) Sharma, M.; Das, B.; Karunakar, G. V.; Satyanarayana, L.;
Bania, K. K. Chiral Ni-Schiff Base Complexes inside Zeolite-Y and
Their Application in Asymmetric Henry Reaction: Effect of Initial
Activation with Microwave Irradiation. J. Phys. Chem. C 2016, 120
(25), 13563−13573.
(29) Godhani, D. R.; Nakum, H. D.; Parmar, D. K.; Mehta, J. P.;
Desai, N. C. Zeolite Y encaged Ru(III) and Fe(III) complexes for
oxidation of styrene, cyclohexene, limonene, and α-pinene: An eye-
catching impact of H2SO4 on product selectivity. J. Mol. Catal. A:
Chem. 2017, 426, 223−237.
(30) Kumar Kundu, B.; Chhabra, V.; Malviya, N.; Ganguly, R.;
Mishra, G. S.; Mukhopadhyay, S. Zeolite encapsulated host-guest
Cu(II) Schiff base complexes: Superior activity towards oxidation
reactions over homogenous catalytic systems. Microporous Mesoporous
Mater. 2018, 271, 100−117.
(31) Hailu, S. L.; Nair, B. U.; Redi-Abshiro, M.; Aravindhan, R.;
Diaz, I.; Tessema, M. Synthesis, characterization and catalytic
application of zeolite based heterogeneous catalyst of iron (III),
nickel (II) and copper (II) salen complexes for oxidation of organic
pollutants. J. Porous Mater. 2015, 22 (5), 1363−1373.
(32) Fan, B.; Li, H.; Fan, W.; Jin, C.; Li, R. Oxidation of cyclohexane
over iron and copper salen complexes simultaneously encapsulated in
zeolite Y. Appl. Catal., A 2008, 340 (1), 67−75.
(33) Bania, K. K.; Bharali, D.; Viswanathan, B.; Deka, R. C.
Enhanced catalytic activity of zeolite encapsulated Fe (III)-Schiff-base
complexes for oxidative coupling of 2-napthol. Inorg. Chem. 2012, 51
(3), 1657−1674.
(34) Barrer, R. M. Hydrothermal chemistry of zeolites; Academic
Press: London: 1982.
(
10) Miller, M. M.; Sherrington, D. C. Alkene Epoxidations
Catalyzed by Mo(VI) Supported on Imidazole-Containing Polymers:
I. Synthesis, Characterization, and Activity of Catalysts in the
Epoxidation of Cyclohexene. J. Catal. 1995, 152 (2), 368−376.
(
11) Gruber, M.; Chouzier, S.; Koehler, K.; Djakovitch, L. Palladium
on activated carbon: a valuable heterogeneous catalyst for one-pot
multi-step synthesis. Appl. Catal., A 2004, 265 (2), 161−169.
(
12) Corma, A.; Garcia, H.; Leyva, A. Catalytic activity of palladium
supported on single wall carbon nanotubes compared to palladium
supported on activated carbon: Study of the Heck and Suzuki
couplings, aerobic alcohol oxidation and selective hydrogenation. J.
Mol. Catal. A: Chem. 2005, 230 (1), 97−105.
(
13) Ko
̈
hler, K.; Wagner, M.; Djakovitch, L. Supported palladium as
catalyst for carbon−carbon bond construction (Heck reaction) in
organic synthesis. Catal. Today 2001, 66 (1), 105−114.
14) Jana, S.; Dutta, B.; Bera, R.; Koner, S. Anchoring of Copper
(
Complex in MCM-41 Matrix: A Highly Efficient Catalyst for
Epoxidation of Olefins by tert-BuOOH. Langmuir 2007, 23 (5),
2
(
492−2496.
15) Miao, J.; Huang, B.; Liu, H.; Cai, M. A phosphine-free, atom-
efficient cross-coupling reaction of triorganoindiums with acyl
chlorides catalyzed by immobilization of palladium(0) in MCM-41.
RSC Adv. 2017, 7 (67), 42570−42578.
(
16) Burrington, J. D.; Clark, D. S. Biocatalysis and Biomimetics;
American Chemical Society: 1989; Vol. 392, p 188.
17) Herron, N. Biocatalysis and Biomimetics; American Chemical
Society: 1989; Chapter 11, Vol. 392, pp 141−154.
18) Ray, S.; Vasudevan, S. Encapsulation of Cobalt Phthalocyanine
in Zeolite-Y: Evidence for Nonplanar Geometry. Inorg. Chem. 2003,
2 (5), 1711−1719.
19) Choudhary, A.; Das, B.; Ray, S. Encapsulation of a Ni salen
complex in zeolite Y: an experimental and DFT study. Dalton Trans.
015, 44 (8), 3753−3763.
20) Choudhary, A.; Das, B.; Ray, S. Enhanced catalytic activity and
(
(35) Dutta, B.; Jana, S.; Bera, R.; Saha, P. K.; Koner, S.
Immobilization of copper Schiff base complexes in zeolite matrix:
Preparation, characterization and catalytic study. Appl. Catal., A 2007,
318, 89−94.
(
4
(
(36) Dhara, K.; Sarkar, K.; Srimani, D.; Saha, S. K.; Chattopadhyay,
P.; Bhaumik, A. A new functionalized mesoporous matrix supported
Pd(ii)-Schiff base complex: an efficient catalyst for the Suzuki-
Miyaura coupling reaction. Dalton Trans. 2010, 39 (28), 6395−6402.
(37) Bania, K. K.; Deka, R. C. Zeolite-Y Encapsulated Metal
Picolinato Complexes as Catalyst for Oxidation of Phenol with
Hydrogen Peroxide. J. Phys. Chem. C 2013, 117 (22), 11663−11678.
(38) Paez-Mozo, E.; Gabriunas, N.; Lucaccioni, F.; Acosta, D. D.;
Patrono, P.; La Ginestra, A.; Ruiz, P.; Delmon, B. Cobalt
phthalocyanine encapsulated in Y zeolite: a physicochemical study.
J. Phys. Chem. 1993, 97 (49), 12819−12827.
2
(
magnetization of encapsulated nickel Schiff-base complexes in zeolite-
Y: a correlation with the adopted non-planar geometry. Dalton Trans.
2
(
016, 45 (47), 18967−18976.
21) Choudhary, A.; Das, B.; Ray, S. Encapsulated Schiff base nickel
complex in zeolite Y: Correlation between catalytic activities and
extent of distortion supported by experimental and DFT studies.
Inorg. Chim. Acta 2017, 462, 256−265.
M
Inorg. Chem. XXXX, XXX, XXX−XXX