N-Phenylglycolohydroxamic Acid in Spinach
J. Agric. Food Chem., Vol. 54, No. 2, 2006 595
(15) Yoshioka, T.; Uematsu, T. Formation of N-arylacylhydroxamic
acids from nitrosoaromatic compounds in isolated spinach leaf
cells. J. Agric. Food Chem. 1998, 46, 606-610.
(16) Corbett, M. D.; Corbett, B. R. Quantitative determination of
N-arylaceto- and N-arylglycolhydroxamic acids in biochemical
reaction mixtures. Anal. Biochem. 1979, 98, 169-177.
(17) Villafranca, J. J.; Axelrod, B. Heptulose synthesis from non-
phosphorylated aldoses and ketoses by spinach transketolase. J.
Biol. Chem. 1971, 246, 3126-3131.
(18) Tolbert, N. E.; Yamazaki, R. K.; Oeser, A. Loclization and
properties of hydroxypyruvate and glyoxylate reductases in
spinach leaf particles. J. Biol. Chem. 1970, 245, 5129-5136.
(19) Sakoda, M.; Hiromi, K. Determination of best-fit values of kinetic
parameters of the Michaelis-Menten equation by the method
of least squares with Taylor expansion. J. Biochem. 1976, 80,
547-555.
of the corresponding N-acetohydroxamic acid derivative (41).
Furthermore, both the hydroxamic acid derivatives have the
ability to form a covalent bond to the DNA of isolated rat cells
(42).
Second, because SGT and transketolase, enzymes for inter-
mediate metabolism, are involved in PGA formation, the
formation of N-arylglycolohydroxamic acids from the corre-
sponding aromatic nitroso compounds in plants could disrupt
both amino acid and sugar metabolisms, which may affect plant
growth and nutritional values.
ACKNOWLEDGMENT
We would like to thank Chie Kijima for technical assistance.
(20) Hinson, J. A.; Mitchell, J. R.; Jollow, D. J. Microsomal
N-hydroxylation of p-chloro-acetanilide. Mol. Pharmacol. 1975,
11, 462-469.
LITERATURE CITED
(21) Yoshioka, T.; Uematsu, T. Formation of N-hydroxy-N-arylac-
etamides from nitrosoaromatic compounds by the mammalian
pyruvate dehydrogenase complex. Biochem. J. 1993, 290, 783-
790.
(22) Riens, B.; Lohaus, G.; Heineke, D.; Heldt, H. W. Amino acid
and sucrose content determined in the cytosolic, chloroplastic,
and vacuolar compartments and in the phloem sap of spinach
leaves. Plant Physiol. 1991, 97, 227-233.
(23) Baskaran, N.; Prakash, V.; Savithri, H. S.; Radhakrishnan, A.
N.; Rao, N. A. Mode of interaction of aminooxy compounds
with sheep liver serine hydroxymethyltransferase. Biochemistry
1989, 28, 9613-9617.
(24) John, R. A.; Charteris, A.; Fowler, L. J. The reaction of amino-
oxyacetate with pyridoxal phosphate-dependent enzymes. Bio-
chem. J. 1978, 171, 771-779.
(25) Rehfeld, D. W.; Tolbert, N. E. Aminotransferases in peroxisomes
from spinach leaves. J. Biol. Chem. 1972, 247, 4803-4811.
(26) Kochetov, G. A. Transketolase from yeast, rat liver, and pig liver.
Methods in Enzymol. 1982, 90, 209-223.
(27) Corbett, M. D.; Chipko, B. R. N-Phenylglycolhydroxamate
production by the action of transketolase on nitrosobenzene.
Biochem. J. 1977, 165, 263-267.
(28) Scnarrenberger, C.; Flechner, A.; Martin, W. Enzymatic evidence
for a complete oxidative pentose phosphate pathway in chloro-
plasts and an incomplete pathway in the cytosol of spinach
leaves. Plant Physiol. 1995, 108, 609-614.
(1) Lamoureux, G. L.; Rusness, D. G. Xenobiotic Conjugation in
Higher Plants. In Xenobiotic Conjugation Chemistry; Paulson,
G. D., Caldwell, J., Hutson, D. H., Menn, J. J., Eds.; American
Chemical Society: Washington, DC, 1986; pp 62-105.
(2) Edwards, V. T.; Hutson, D. H. The Disposition of Plant
Xenobiotic Conjugates in Animals. In Xenobiotic Conjugation
Chemistry; Paulson, G. D., Caldwell, J., Hutson, D. H., Menn,
J. J., Eds.; American Chemical Society: Washington, DC, 1986;
pp 322-340.
(3) Korte, F.; Kvesitadze, G.; Ugrekhelidze, D.; Gordeziani, M.;
Khatisashvili, G.; Buadze, O.; Zaalishvili, G.; Coulston, F.
Organic toxicants and plants. Ecotoxicol. EnViron. Saf. 2000,
47, 1-26.
(4) Ugrekhelidze, D.; Korte, F.; Kvesitadze, G. Uptake and trans-
formation of benzene and toluene by plant leaves. Ecotoxicol.
EnViron. Saf. 1997, 47, 24-29.
(5) Goodman, B. A.; Allison, M. J.; Oparka, K. J.; Hillman, J. R.
Xenobiotics: Their activity and mobility in plants and soils. J.
Sci. Food Agric. 1992, 59, 1-20.
(6) Yang, X.; Kulkarni, A. P. N-dealkylation of aminopyrine
catalyzed by soybean lipoxygenase in the presence of hydrogen
peroxide. J. Biochem. Mol. Toxicol. 1998, 12, 175-183.
(7) Chung, J. G.; Lee, J. H.; Ho, C. C.; Lai, J. M.; Chou, Y. C.;
Teng, H. H.; Hung, C. F.; Huang, S. C. A survey of arylamine
N-acetyltransferase activity in common fruits and vegetables. J.
Food Biochem. 1997, 20, 481-490.
(29) Teige, M.; Melzer, M.; Su¨ss, K.-H. Purification, properties and
in situ localization of the amphibolic enzymes D-ribulose
5-phosphate 3-epimerase and transketolase from spinach
chloroplasts. Eur. J. Biochem. 1998, 252, 237-244.
(30) Nakamura, Y.; Tolbert, N. E. Serine:glyoxylate, alanine:glyoxy-
late, and glutamate:glyoxylate aminotransferase reactions in
peroxisomes from spinach leaves. J. Biol. Chem. 1983, 258,
7631-7638.
(31) Smith, I. K. Purification and characterization of serine:glyoxylate
aminotransferase from kidney bean (phaseolus Vulgaris). Bio-
chim. Biophys. Acta 1973, 321, 156-164.
(32) Yamazaki, R. K.; Tolbert, N. E. Enzymic characterization of
leaf peroxisomes. J. Biol. Chem. 1970, 245, 5137-5144.
(33) Noguchi, T.; Hayashi, S. Peroxisomal localization and properties
of tryptophan aminotransferase in plant leaves. J. Biol. Chem.
1980, 255, 2267-2269.
(8) Loutre, C.; Dixon, D. P.; Brazier, M.; Slater, M.; Cole, D. J.;
Edwards, R. Isolation of a glycosyltransferase from Arabidopsis
thaliana active in the metabolism of the persistent pollutant 3,4-
dichloroaniline. Plant J. 2003, 34, 485-493.
(9) Neuefeind, T.; Reinmer, P.; Bieseler, B. Plant glutathione
S-transferases and herbicide detoxification. Biol. Chem. 1997,
378, 199-205.
(10) Ruhland, M.; Engelhardt, G.; Pawlizki, K. A comparative
investigation of the metabolism of the herbicide glufosinate in
cell cultures of transgenic glufosinate-resistant and non-transgenic
oilseed rape (Brassica napus) and corn (Zea mays). EnViron.
Biosaf. Res. 2002, 1, 29-37.
(11) Hamburg, A.; Puvanesarajah, V.; Burnett, T. J.; Barnekow, D.
E.; Premkumar, N. D.; Smith, G. A. Comparative degradation
of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato
after Foliar application and in wheat, radish, lettuce, and apple
after soil application. J. Agric. Food Chem. 2001, 49, 146-155.
(12) Hohl, H.-U.; Barz, W. Metabolism of the insecticide Phoxim in
plants and cell suspension cultures of soybean. J. Agric. Food
Chem. 1995, 43, 1052-1056.
(34) Ireland, R. J.; Joy, K. W. Purification and properties of an
asparagine aminotransferase from Pisum sativum leaves. Arch.
Biochim. Biophys. 1983, 223, 291-296.
(35) Givan, C. V. Aminotransferases in higher plants. In The
Biochemistry of Plants, Miflin, B. J., Eds.; Academic Press: New
York, 1980; Vol. 5, pp 329-357.
(13) Purohit, V.; Basu, A. K. Mutagenicity of Nitroaromatic Com-
pounds. Chem. Res. Toxicol. 2000, 13, 673-692.
(14) Lotlikar, P. D. Cytochrome P-450 catalysed activation of
carcinogenic aromatic amines and amides. In N-Oxidation of
Drugs; Hlavica, P., Damani, L. A., Eds.; Chapman & Hall:
London, 1991; pp 315-329.
(36) Yoshioka, T.; Uematsu, T. Biotransformation of nitroso aromatic
compounds and 2-oxo acids to N-hydroxy-N-arylacylamides by
thiamine-dependent enzymes in rat liver. Drug Metab. Dispos.
1998, 26, 705-710.