Effect of Poly(ethylene glycol)-400 and Carbon on MoO3 Nanocomposite Materials
vent was refluxed at 70—80 ℃ for an appropriate time
to gave 3,4-dihydropyrimidinone. After completion of
the reaction monitored by TLC (hexane/ethyl acetate,
8∶2), the reaction mixture was brought to room tem-
perature. Reaction mixture was washed by cold water to
remove excess urea or thiourea and then filtered. The
remaining solid material was washed with hot ethyl
acetate. The filtrate was concentrated and the solid
product was recrystallized from ethanol to give the pure
product. Many substitution patterns on the aromatic ring
could be introduced with high efficiency. We noted that
all aromatic aldehydes carrying either electron-donating
or electron-withdrawing substituents reacted well; giv-
ing moderate to excellent yields. The structure of all the
products was confirmed by comparing melting point
and spectral data with those in the literature.
4-(4-Fluorophenyl)-3,4-dihydro-6-methyl-5-propio-
nylpyrimidin-2(1H)-one (4e): 1HNMR (CDCl3, 300
MHz) δ: 8.08 (s, 1H), 7.85 (s, 1H), 7.65 (d, J=9.08 Hz,
2H), 7.28 (d, J=8.95 Hz, 2H), 5.45 (d, J=2.20 Hz, 1H),
4.11 (q, J=7.17 Hz, 2H), 2.37 (s, 3H), 1.28 (t, J=7.16
-
1
Hz, 3H); IR (KBr) ν: 3232, 1724, 1631 cm .
4-(2-Chlorophenyl)-3,4-dihydro-6-methyl-5-propio-
nylpyrimidin-2(1H)-one (4f): 1HNMR (CDCl3, 300
MHz) δ: 8.38 (s, 1H), 8.11 (s, 1H), 7.35 (d, J=9.10 Hz,
2H), 7.08 (d, J=9.08 Hz, 2H), 5.45 (d, J=2.18 Hz, 1H),
4.08 (q, J=7.10 Hz, 2H), 2.36 (s, 3H), 1.19 (t, J=7.44
-
1
Hz, 3H); IR (KBr) ν: 3250, 1741, 1654 cm .
1-(1,2,3,4-Tetrahydro-6-methyl-2-thioxo-4-p-tolyl-
1
pyrimidin-5-yl)propan-1-one (4g): H NMR (CDCl3,
300 MHz) δ: 8.05 (s, 1H), 7.75 (s, 1H), 7.26—7.40 (m,
4H), 5.35 (d, J=3.05 Hz, 1H), 4.21 (q, J=6.90 Hz, 2H),
2.45 (s, 3H), 1.31 (s, 3H), 0.90 (t, J=7.80 Hz, 3H); IR
-
1
Scheme 1 Preparation of substituted 3,4-dihydropyrimidinones
from benzaldehyde, ethylacetoacetate and urea or thiourea by
using CPM-3 catalyst in acetonitrile solvent with reflux
(KBr) ν: 3240, 1722, 1638 cm .
1-(4-(4-Chlorophenyl)-1,2,3,4-tetrahydro-6-methyl-
2-thioxopyrimidin-5-yl)propan-1-one (4h): 1H NMR
(CDCl3, 300 MHz) δ: 8.75 (s, 1H), 8.51 (s, 1H), 8.25 (d,
J=7.88 Hz, 2H), 7.88 (d, J=7.58 Hz, 2H), 5.45 (d, J=
2.05 Hz, 1H), 4.32 (q, J=7.15 Hz, 2H), 1.71 (s, 3H),
1.32 (t, J=7.01 Hz, 3H); IR (KBr) ν: 3245, 1725, 1632,
-
1
1575, 1545 cm .
1-(1,2,3,4-Tetrahydro-6-methyl-4-(3-nitrophenyl)-2-
thioxopyrimidin-5-yl)propan-1-one (4i): 1H NMR
(CDCl3, 300 MHz) δ: 8.15 (s, 1H), 8.08 (s, 1H), 7.25 (d,
J=9.35 Hz, 2H), 7.18 (d, J=9.00 Hz, 2H), 5.45 (d, J=
2.05 Hz, 1H), 4.17 (q, J=7.51 Hz, 2H), 1.88 (s, 3H),
1.19 (t, J=7.10 Hz, 3H); IR (KBr) ν: 3250, 1741, 1654.
Results and discussion
Physical and spectroscopic data
XRD analysis
3,4-Dihydro-6-methyl-4-phenyl-5-propionylpyrimidin-
2(1H)-one (4a): HNMR (CDCl3, 300 MHz) δ: 8.40 (s,
In order to understand the phase symmetry of the
calcined samples, a systematic study on the XRD was
undertaken. Figure 1 shows that the highly intense
peaks were obtained at 2θ=22.98°, 25.36°, 29.33°,
35.94°, 39.40°, 43.19° and 47.35°, corresponding to
planes (320), (400), (421), (440), (532), (542) and (552),
respectively, which predicts the cubic crystal symmetry
1
1H), 8.07(s, 1H), 7.26—7.38 (m, 5H), 5.45 (d, J=2.15
Hz, 1H), 4.08 (q, J=6.90 Hz, 2H), 2.36 (s, 3H), 1.19 (t,
-
1
J=7.10 Hz, 3H); IR (KBr) ν: 3240, 1722, 1638 cm .
3,4-Dihydro-6-methyl-5-propionyl-4-p-tolylpyrimidin-
1
2(1H)-one (4b): HNMR (CDCl3, 300 MHz) δ: 8.10 (s,
1H), 7.94 (s, 1H), 7.26—7.38 (m, 5H), 5.35 (d, J=2.05
Hz, 1H), 4.11 (q, J=6.09 Hz, 2H), 2.35 (s, 3H), 1.71 (s,
3H), 1.19 (t, J=7.80 Hz, 3H); IR (KBr) ν: 3240, 1722,
-
1
1638 cm .
4-(4-Chlorophenyl)-3,4-dihydro-6-methyl-5-propio-
nylpyrimidin-2(1H)-one (4c): 1HNMR (CDCl3, 300
MHz) δ: 8.08 (s, 1H), 7.85 (s, 1H), 7.58 (d, J=9.90 Hz,
2H), 7.32 (d, J=9.08 Hz, 2H), 4.38 (d, J=6.80 Hz, 1H),
4.12 (q, J=7.20 Hz, 2H), 2.37 (s, 3H), 1.28 (t, J=7.15
-
1
Hz, 3H ); IR (KBr) ν: 3225, 1720, 1615 cm .
3,4-Dihydro-6-methyl-4-(3-nitrophenyl)-5-propionyl-
1
pyrimidin-2(1H)-one (4d): HNMR (CDCl3, 300 MHz)
δ: 8.38 (s, 1H), 8.15 (s, 1H), 7.75 (d, J=9.18 Hz, 2H),
7.48 (d, J=9.18 Hz, 2H), 5.05 (d, J=2.25 Hz, 1H),
3.97 (q, J=7.20 Hz, 2H), 2.42 (s, 3H), 1.30 (t, J=7.24
Figure 1 XRD patterns of carbon sample prepared from Acacia
arabica.
-
1
Hz, 3H); IR (KBr) ν: 3232, 1724, 1631 cm .
Chin. J. Chem. 2011, 29, 2049— 2056
© 2011 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2051