Organic Letters
Letter
in Branched [4]Pseudorotaxane Formation. Supramol. Chem. 2017,
(20) (a) Bartik, K.; Luhmer, M.; Dutasta, J.-P.; Collet, A.; Reisse, J.
1
29
1
2
(
9, 430−440.
Xe and H NMR Study of the Reversible Trapping of Xenon by
Cryptophane-A in Organic Solution. J. Am. Chem. Soc. 1998, 120,
784−791. (b) Boutin, C.; Leonce, E.; Brotin, T.; Jerschow, A.;
13) Westcott, A.; Fisher, J.; Harding, L. P.; Rizkallah, P.; Hardie, M.
J. Self-Assembly of a 3-D Triply Interlocked Chiral [2]Catenane. J.
Am. Chem. Soc. 2008, 130, 2950−2951.
́
1
29
Berthault, P. Ultrafast Z-Spectroscopy for Xe NMR-Based Sensors.
J. Phys. Chem. Lett. 2013, 4, 4172−4176. (c) Joseph, A. I.; Lapidus, S.
H.; Kane, C. M.; Holman, K. T. Extreme Confinement of Xenon by
Cryptophane-111 in the Solid State. Angew. Chem., Int. Ed. 2015, 54,
(
14) (a) El-Ayle, G.; Holman, K. T. Cryptophanes. In Comprehensive
Supramolecular Chemistry II; Atwood, J. L., Gokel, G. W., Barbour, L.
J., Eds.; Elsevier: New York, 2017. (b) Brotin, T.; Dutasta, J.-P.
Cryptophanes and Their ComplexesPresent and Future. Chem. Rev.
1471−1475. (d) Joseph, A. I.; El-Ayle, G.; Boutin, C.; Leonce, E.;
́
2
(
009, 109, 88−130.
Berthault, P.; Holman, K. T. Rim-Functionalized Cryptophane-111
Derivatives via Heterocapping, and Their Xenon Complexes. Chem.
Commun. 2014, 50, 15905−15908.
15) (a) Henkelis, J. J.; Hardie, M. J. Controlling the Assembly of
Cyclotriveratrylene-Derived Coordination Cages. Chem. Commun.
(21) (a) Riggle, B. A.; Wang, Y.; Dmochowski, I. J. A “Smart” 129Xe
NMR Biosensor for PH-Dependent Cell Labeling. J. Am. Chem. Soc.
2015, 137, 5542−5548. (b) Witte, C.; Martos, V.; Rose, H. M.;
2
015, 51, 11929−11943. (b) Henkelis, J. J.; Hardie, M. J. Tuning the
Coordination Chemistry of Cyclotriveratrylene Ligand Pairs through
Alkyl Chain Aggregation. CrystEngComm 2014, 16, 8138−8146.
(
c) Ronson, T. K.; Nowell, H.; Westcott, A.; Hardie, M. J. Bow-Tie
Reinke, S.; Klippel, S.; Schroder, L.; Hackenberger, C. P. R. Live-Cell
̈
Metallo-Cryptophanes from a Carboxylate Derived Cavitand. Chem.
Commun. 2011, 47, 176−178. (d) Oldknow, S.; Martir, D. R.;
Pritchard, V. E.; Blitz, M. A.; Fishwick, C. W. G.; Zysman-Colman, E.;
Hardie, M. J. Structure-Switching M L Ir(III) Coordination Cages
MRI with Xenon Hyper-CEST Biosensors Targeted to Metabolically
Labeled Cell-Surface Glycans. Angew. Chem., Int. Ed. 2015, 54, 2806−
2810. (c) Khan, N. S.; Riggle, B. A.; Seward, G. K.; Bai, Y.;
Dmochowski, I. J. Cryptophane-Folate Biosensor for 1 Xe NMR.
Bioconjugate Chem. 2015, 26, 101−109. (d) Rose, H. M.; Witte, C.;
29
3
2
with Photo-Isomerising Azo-Aromatic Linkers. Chem. Sci. 2018, 9,
8
150−8159. (e) Kai, S.; Kojima, T.; Thorp-Greenwood, F. L.; Hardie,
Rossella, F.; Klippel, S.; Freund, C.; Schroder, L. Development of an
̈
1
29
M. J.; Hiraoka, S. How Does Chiral Self-Sorting Take Place in the
Formation of Homochiral Pd6L8 Capsules Consisting of Cyclo-
triveratrylene-Based Chiral Tritopic Ligands? Chem. Sci. 2018, 9,
Antibody-Based, Modular Biosensor for
Xe NMR Molecular
Imaging of Cells at Nanomolar Concentrations. Proc. Natl. Acad.
Sci. U. S. A. 2014, 111, 11697−11702. (e) Kotera, N.; Tassali, N.;
4
104−4108. (f) Cookson, N. J.; Fowler, J. M.; Martin, D. P.; Fisher,
Leo
Delacour, L.; Traore, T.; Buisson, D.-A.; Taran, F.; Coudert, S.;
́
́
nce, E.; Boutin, C.; Berthault, P.; Brotin, T.; Dutasta, J.-P.;
J.; Henkelis, J. J.; Ronson, T. K.; Thorp-Greenwood, F. L.; Willans, C.
E.; Hardie, M. J. Metallo-Cryptophane Cages from Cis-Linked and
Trans-Linked Strategies. Supramol. Chem. 2018, 30, 255−266.
1
29
Rousseau, B. A Sensitive Zinc-Activated Xe MRI Probe. Angew.
Chem., Int. Ed. 2012, 51, 4100−4103. (f) Stevens, T. K.; Palaniappan,
K. K.; Ramirez, R. M.; Francis, M. B.; Wemmer, D. E.; Pines, A.
(
g) Pritchard, V. E.; Rota Martir, D.; Oldknow, S.; Kai, S.; Hiraoka,
1
29
S.; Cookson, N. J.; Zysman-Colman, E.; Hardie, M. J. Homochiral
Self-Sorted and Emissive IrIII Metallo-Cryptophanes. Chem. - Eur. J.
HyperCEST Detection of a Xe-Based Contrast Agent Composed of
Cryptophane-A Molecular Cages on a Bacteriophage Scaffold. Magn.
Reson. Med. 2013, 69, 1245−1252. (g) Seward, G. K.; Bai, Y.; Khan,
N. S.; Dmochowski, I. J. Cell-Compatible, Integrin-Targeted
2
017, 23, 6290−6294. (h) Hardie, M. J. Self-Assembled Cages and
Capsules Using Cyclotriveratrylene-Type Scaffolds. Chem. Lett. 2016,
1
29
4
5, 1336−1346. (i) Chapellet, L.-L.; Cochrane, J. R.; Mari, E.; Boutin,
Cryptophane- XeNMR Biosensors. Chem. Sci. 2011, 2, 1103−
1110. (h) Meldrum, T.; Seim, K. L.; Bajaj, V. S.; Palaniappan, K. K.;
Wu, W.; Francis, M. B.; Wemmer, D. E.; Pines, A. A Xenon-Based
Molecular Sensor Assembled on an MS2 Viral Capsid Scaffold. J. Am.
Chem. Soc. 2010, 132, 5936−5937. (i) Tassali, N.; Kotera, N.; Boutin,
C.; Berthault, P.; Brotin, T. Synthesis of Cryptophanes with Two
Different Reaction Sites: Chemical Platforms for Xenon Biosensing. J.
Org. Chem. 2015, 80, 6143−6151. (j) Breg
́
ier, F.; Hudece
̌
k, O.;
Chaux, F.; Penouilh, M.-J.; Chambron, J.-C.; Lhotak
́
, P.; Aubert, E.;
Espinosa, E. Generation of Cryptophanes in Water by Disulfide
C.; Leo
Brotin, T.; Dutasta, J.-P.; Berthault, P. Smart Detection of Toxic
́
nce, E.; Boulard, Y.; Rousseau, B.; Dubost, E.; Taran, F.;
Bridge Formation. Eur. J. Org. Chem. 2017, 2017, 3795−3811.
2
+
2+
129
(
k) Schaly, A.; Rousselin, Y.; Chambron, J.-C.; Aubert, E.; Espinosa,
Metal Ions, Pb and Cd , Using a Xe NMR-Based Sensor. Anal.
E. The Stereoselective Self-Assembly of Chiral Metallo-Organic
Chem. 2014, 86, 1783−1788. (j) Schroder, L.; Lowery, T. J.; Hilty, C.;
̈
Cryptophanes. Eur. J. Inorg. Chem. 2016, 2016, 832−843.
Wemmer, D. E.; Pines, A. Molecular Imaging Using a Targeted
Magnetic Resonance Hyperpolarized Biosensor. Science 2006, 314,
446−449.
(
16) Bouchet, A.; Brotin, T.; Linares, M.; Ågren, H.; Cavagnat, D.;
Buffeteau, T. Enantioselective Complexation of Chiral Propylene
Oxide by an Enantiopure Water-Soluble Cryptophane. J. Org. Chem.
(22) (a) Canceill, J.; Collet, A.; Gabard, J.; Kotzyba-Hibert, F.; Lehn,
J.-M. Speleands. Macropolycyclic Receptor Cages Based on Binding
and Shaping Sub-Units. Synthesis and Properties of Macrocycle
Cyclotriveratrylene Combinations. Preliminary Communication. Helv.
Chim. Acta 1982, 65, 1894−1897. (b) Zhang, D.; Martinez, A.;
Dutasta, J.-P. Emergence of Hemicryptophanes: From Synthesis to
Applications for Recognition, Molecular Machines, and Supra-
molecular Catalysis. Chem. Rev. 2017, 117, 4900−4942.
2
(
011, 76, 4178−4181.
17) Garel, L.; Dutasta, J.-P.; Collet, A. Complexation of Methane
and Chlorofluorocarbons by Cryptophane-A in Organic Solution.
Angew. Chem., Int. Ed. Engl. 1993, 32, 1169−1171.
(
18) (a) Brotin, T.; Goncalves, S.; Berthault, P.; Cavagnat, D.;
Buffeteau, T. Influence of the Cavity Size of Water-Soluble
Cryptophanes on Their Binding Properties for Cesium and Thallium
Cations. J. Phys. Chem. B 2013, 117, 12593−12601. (b) Brotin, T.;
Cavagnat, D.; Berthault, P.; Montserret, R.; Buffeteau, T. Water-
Soluble Molecular Capsule for the Complexation of Cesium and
Thallium Cations. J. Phys. Chem. B 2012, 116, 10905−10914.
(23) Zhang, D.; Gao, G.; Guy, L.; Robert, V.; Dutasta, J.-P.;
Martinez, A. A Fluorescent Heteroditopic Hemicryptophane Cage for
the Selective Recognition of Choline Phosphate. Chem. Commun.
2015, 51, 2679−2682.
(
c) Brotin, T.; Montserret, R.; Bouchet, A.; Cavagnat, D.; Linares, M.;
(24) (a) Zhang, D.; Mulatier, J.-C.; Cochrane, J. R.; Guy, L.; Gao,
G.; Dutasta, J.-P.; Martinez, A. Helical, Axial, and Central Chirality
Combined in a Single Cage: Synthesis, Absolute Configuration, and
Recognition Properties. Chem. - Eur. J. 2016, 22, 8038−8042.
(b) Long, A.; Perraud, O.; Albalat, M.; Robert, V.; Dutasta, J.-P.;
Martinez, A. Helical Chirality Induces a Substrate-Selectivity Switch
in Carbohydrates Recognitions. J. Org. Chem. 2018, 83, 6301−6306.
(25) (a) Zhang, D.; Cochrane, J. R.; Di Pietro, S.; Guy, L.;
Gornitzka, H.; Dutasta, J.-P.; Martinez, A. Breathing” Motion of a
Modulable Molecular Cavity. Chem. - Eur. J. 2017, 23, 6495−6498.
(b) Martinez, A.; Guy, L.; Dutasta, J.-P. Reversible, Solvent-Induced
Buffeteau, T. High Affinity of Water-Soluble Cryptophanes for
Cesium Cations. J. Org. Chem. 2012, 77, 1198−1201.
(
19) (a) Fairchild, R. M.; Holman, K. T. Selective Anion
Encapsulation by a Metalated Cryptophane with a π-Acidic Interior.
J. Am. Chem. Soc. 2005, 127, 16364−16365. (b) Fairchild, R. M.;
Joseph, A. I.; Holman, K. T.; Fogarty, H. A.; Brotin, T.; Dutasta, J.-P.;
Boutin, C.; Huber, G.; Berthault, P. A Water-Soluble Xe@
cryptophane-111 Complex Exhibits Very High Thermodynamic
1
29
Stability and a Peculiar Xe NMR Chemical Shift. J. Am. Chem.
Soc. 2010, 132, 15505−15507.
E
Org. Lett. XXXX, XXX, XXX−XXX