10.1002/anie.201706261
Angewandte Chemie International Edition
COMMUNICATION
arene)].[4] However, to the best of our knowledge, hydride 2 is
the first example of catalyst for the asymmetric hemihydro-
genation of benzils to benzoins. The use of a hydride complex
such 2, which neither needs base activation nor releases an
internal base during the reaction, is pivotal in order to perform
the asymmetric transfer hydrogenation of base-sensitive
substrates. Although mechanistic speculations are beyond the
scope of this paper, the similar performance of 2 and 3a/NaOtBu,
in particular after addition of base to hydride 2, is striking and
may hint to the involvement of hydride 2, or of a closely related
species, in the catalytic cycle with both systems. A mechanistic
investigation is under way, and its results will be reported in due
time.
[15] D. Enders, U. Kallfass, Angew. Chem. Int. Ed. 2002, 41, 1743; Angew.
Chem. 2002, 114, 1822.
[16] C. Vila, L. Quintero, G. Blay, M. C Muñoz, J. R. Pedro, Org. Lett., 2016,
18, 5652.
[17] a) P. Mahajabeen, A. Chadha, Tetrahedron: Asymmetry, 2015, 26,
1167; b) P. Hoyos, G. Sansottera, M. Fernandéz, F. Molinari, J. V.
Sinisterra, A. R. Alcántara, Tetrahedron, 2008, 64, 7929; c) J. Zhang, S.
Wu, J. wu, Z. Li, ACS Catal. 2014, 5, 51; d) J. Zhang, T. Xu, Z. Li, Adv.
Synth. Catal, 2013, 3147; e) W. Adam, M. Lazarus, C. R. Saha-Möller,
P. Schreirer, Acc. Chem. Res. 1999, 32, 837.
[18] X. Y. Ren, H. F. Du, J. Am. Chem. Soc. 2016, 138, 810.
[19] H. Sommer, J. Y. Hamilton, A. Fürstner, Angew. Chem. Int. Ed. 2017,
56, 6161. Angew. Chem. 2017, 117, 6257.
[20] a) Y. Ohgo, S. Takeuchi, Y. Natori, J. Yoshimura, Bull. Chem. Soc. Jpn.
1981, 54, 2124; b) Ogho, Y.; Tashiro, Y.; Takeuchi, S. Bull. Chem. Soc.
Jpn. 1987, 60, 1549-1551.
[21] a) R. Bigler, R. Huber, M. Stöckli, A. Mezzetti, ACS Catal. 2016, 6,
6455; b) R. Bigler, A. Mezzetti, Org. Process Res. Dev. 2016, 20, 253;
c) R. Bigler, R. Huber, A. Mezzetti, Synlett 2016, 27, 831; d) R. Bigler,
R. Huber, A. Mezzetti, Angew. Chem. Int. Ed. 2015, 54, 5171; Angew.
Chem. 2015, 127, 5260–5263; e) R. Bigler, A. Mezzetti, Org. Lett. 2014,
16, 6460; f) R. Bigler, E. Otth, A. Mezzetti, Organometallics 2014, 33,
4086.
Keywords: Acyloins • Iron • Base-free • Asymmetric transfer
hydrogenation• Macrocyclic ligands
[1]
[2]
a) D. Wang, D. Astruc, Chem. Rev. 2016, 115, 6621; b) J. Ito, H.
Nishiyama, Tetrahedron Lett. 2014, 55, 3133.
a) R. M. Bullock, Science 2013, 342, 1054; b) Catalysis Without
Precious Metals (Ed.: R.M. Bullock), Wiley-VCH, Weinheim, 2010; c) H.
Nakazawa, M. Itazaki, Top. Organomet. Chem. 2011, 33, 27; d) M.
Darwish, M. Wills, Catal. Sci. Technol. 2012, 2, 243; e) B. A. F. Le
Bailly, S. P. Thomas, RSC Adv. 2011, 1, 1435; f) S. Chakraborty, H.
Guan, Dalton Trans. 2010, 39, 7427; g) R. H. Morris, Chem. Soc. Rev.
2009, 38, 2282; h) K. Junge, K. Schrçder, M. Beller, Chem. Commun.
2011, 47, 4849; i) A. J. Blacker, P. Thompson, Scale-Up Studies in
Asymmetric Transfer Hydrogenation. In Asymmetric Catalysis on
Industrial Scale: Challenges, Approaches and Solutions; Blaser, H.-U.;
Federsel, H.-J., Eds.; Wiley-VCH: Weinheim, 2010; 265.
[22] a) Z. R. Dong, Y. Y. Li, J. S. Chen, B. Z. Li, Y. Xing, J. X. Gao, Org. Lett.
2005, 7, 1043; b) A. Soltani, M. A. Ariger, H. Vázquez-Villa, E. M.
Carreira, Org. Lett, 2010, 12, 2893; c) M. A. Ariger, E. M. Carreira, Org.
Lett, 2012, 14, 4522.
[23] a) S. Burling, M. K. Whittlesey, J. M. J. Williams, Adv, Synth. Catal.
2005, 347, 591; b) Z. E. Clarke, P. T. Maragh, T. P. Dasgupta, D. G.
Gusev, A. J. Lough, K. Abdur-Rashid, Organometallics 2006, 25, 4113;
c) Corberán, R.; Peris, E. Organometallics 2008, 27, 1954; d) M. C.
Carrion, F. Sepulveda, F. A. Jalon, B. R. Manzano, A. M. Rodríguez,
Organometallics, 2009, 28, 3822. e) A. Landwehr, B. Dudle, T. Fox, O.
Blacque, H. Berke, Chem. Eur. J. 2012, 18, 5701; f) M. Kumar, J.
DePasquale, N. J. White, M. Zeller, E. T. Papish, Organometallics,
2013, 32, 2135; g) S. E. Clapham, M. Zimmer-De Iuliis, K. Mack, D. E.
Prokopchuck, R. H. Morris, Can. J. Chem. 2014, 92, 731; h) A. Ruff, C.
Kirby, B. C. Chan, A. R. O’Connor, Organometallics, 2016, 35, 327; i) M.
G. Sommer, M. Marinova, M. J. Krafft, D. Urankar, D. Schweinfurth, M.
Bubrin, B. Sarkar, Organometallics, 2016, 35, 2840, and references 8
therein; j) L. Alvarez-Rodríguez, J. A. Cabeza, J. M. Fernandez-Colinas,
P. Garcia-Alvarez, D. Polo, Organometallics, 2016, 35, 2516.
[24] a) R. Langer, M. A. Iron, L. Konstantinovski, Y. Diskin-Posner, G. Leitus,
Y. Ben-David, D. Milstein, Chem. Eur. J. 2012, 18, 7196; b) F. Schneck,
M. Assmann, M. Balmer, K. Harms, R. Langer, Organometallics 2016,
35, 1931.
[3]
[4]
J. S. M. Samec, J. E. Bäckvall, P. G. Andersson, P. Brandt, Chem. Soc.
Rev. 2006, 35, 237.
a) K. Murata, K. Okano, M. Miyagi, H. Iwane, R. Noyori, T. Ikariya, Org.
Lett. 1999, 1119; b) H. Zhang, D. Feng, H. Sheng, X. Ma, J. Wan, Q.
Tang, RSC Advances 2014 4, 6417.
[5]
[6]
T. Koike K. Murata, T. Ikariya, Org. Lett. 2000, 2, 3833.
S. Hannessian, Total Synthesis of Natural Products: The Chiron
Approach, Pergamon Press: New York, 1983, chapter 2.
[7]
For a review, see: a) P. Hoyos, J. V. Sinisterra, F. Molinari, A. R.
Alcantara, P. Domínguez de María, Acc. Chem. Res. 2010, 43,
288−299. Recent biocatalytic examples: b) W. Adam, M. Lazarus, C. R.
Saha-Möller, P. Schreier, Acc. Chem. Res. 1999, 32, 837, and
references 11 to 17 therein; c) M. Beigi, E. Gauchenova, L. Walter, S.
Waltzer, F. Bonina, T. Stillger, D. Rother, M. Pohl, M. Müller, Chem.
Eur. J. 2016, 22, 13999.
[25] Ohkuma, T.; Koizumi, M.; Muniz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J.
Am. Chem. Soc. 2002, 124, 6508–6509.
[8]
[9]
C. Palomo, M. Oiarbide, J. M. García, Chem. Soc. Rev. 2012, 41, 4150.
B. Plietker, Tetrahedron: Asymmetry 2005, 16, 3453.
[26] a) The residual water[26b] present in CH2Cl2 distilled over CaH2 is critical
to solubilize KBr. When the reaction was carried out in CH2Cl2 dried
over preactivated molecular sieves, the bis(isonitrile) complex
[Fe(CNR)2(1)](BF4)2 was formed along with 5 (1:1 ratio), which we
attribute to the lower concentration of bromide ions. b) D. R. Burfield, K-
H, Lee, R. H. Smithers, J. Org. Chem. 1997, 42, 3060.
[10] F. A. Davis, B. C. Chen,Chem. Rev. 1992, 92, 919.
[11] Selected examples: a) T. Hashiyama, K. Morikawa, K. B. Sharpless, J.
Org. Chem. 1992, 57, 5067; b) K. Morikawa, J. Park, P. H. Andersson,
T. Hashiyama, K. B. Sharpless, J. Am. Chem. Soc., 1993, 115, 8463. c)
W. Adam, R. T. Fell, V. R. Stegmann, C. R. Saha-Möller, J. Am. Chem.
Soc. 1998, 120, 708.
[27] C. A. Sandoval, T. Ohkuma, K. Muñiz, R. Noyori, J. Am. Chem. Soc.
2003, 125, 13490.
[12] a) P. Muthupandi, S. K. Alamsetti, G. Sekar, Chem. Commun. 2009,
3288; b) S. K. Alamsetti, P. Muthupandi, G. Sekar, Chem. Eur. J. 2009,
15, 5424; c) P. Muthupandi, G. Sekar, Tetrahedron: Asymmetry 2011,
22, 512;. d) C. T. Chen, J. Q. Kao, S. B. Salunke, Y. H. Lin, Org. Let.
2011, 13, 26.
[28] a) During reaction optimization, we observed that kinetic resolution
occurred in the second hydrogenation step. The increasing ee of the
residual benzoin (9a) over time implies that the second reduction step
is faster for the R enantiomer, which suggests that the reduction of the
second C=O bond is substrate-controlled, see: b) M. Kitamura, T.
Ohkuma, S. Inoue, N. Sayo, H. Kumobayashi, S. Akutagawa, T. Ohta,
H. Takaya, R. Noyori, J. Am. Chem. Soc. 1988, 110, 629.
[13] S. Agrawal, E. Martinez-Castro, R. Marcos, B. Martin-Matute, Org. Lett.
2014, 16, 2256 and references 7 and 8 therein.
[14] (a) B. Plietker, Org. Lett. 2004, 6, 289. (b) O. Onomura, H. Arimoto, Y.
Matsumura, Y. Demizu, Tetrahedron Lett. 2007, 48, 8668.
This article is protected by copyright. All rights reserved.