The kinetic isotope effects (kie) of 1.3 and 1.4 for Et
reactions with H O and MeOH, respectively, are consistent with
a primary isotope effect, and comparable to the kie of 1.23
3
Si–H/D
Acknowledgements
2
This work was supported by the Chemical Sciences, Geosciences
and Biosciences Division, Office of Basic Energy Sciences, U.S. De-
partment of Energy (grant no. DE-FG02–06ER15794).
23
observed for dichlorocarbene insertion into Bu
3
SiH. Therefore,
we postulate insertion of the Si–H bond in the activated complex.
1
8
The O-labelling studies show that even under single turnover
conditions the water oxygen is exclusively transferred to the silicon
atom of silane. Thus, we suggest attack of Si, the electrophilic
site of the Si–H bond, onto a hydroxo or alkoxo ligand (a
nucleophilic site on rhenium) with concurrent hydride transfer
Notes and references
1 I. Ojima, Z. Li, J. Zhu, The Chemistry of Organic Silicon Compounds,
S. Rappoport, Y. Apeloig, ed., Wiley, New York 1998, ch. 29.
P. D. Lickiss, Adv. Inorg. Chem., 1995, 42, 147.
2
3
to afford silanol or sily ether and oxorhenium(V) hydride. The
E. G. Rochow and W. F. Gilliam, J. Am. Chem. Soc., 1941, 63, 798; G. I.
Harris, J. Chem. Soc., 1963, 5978.
+
latter reacts with solvated [H ] to evolve H
2
and regenerate the
4
5
W. Adam, R. Mello and R. Curci, Angew. Chem., Int. Ed. Engl., 1990,
cationic active catalyst. This mechanism is outlined in Scheme 1.
The activation parameters support this mechanistic model. The
2
9, 890.
(a) L. H. Sommer and J. E. Lyons, J. Am. Chem. Soc., 1969, 91, 7061;
b) E. Matarasso-Tchiroukhine, J. Chem. Soc., Chem. Commun., 1990,
‡
negative values of DS are consistent with a bimolecular reaction
(
‡
and the modest DH values are indicative of compensating
681; (c) W. Adam, H. Garcia, C. M. Mitchell, C. R. Saha-M o¨ ller and
D. Weichold, Chem. Commun., 1998, 2609.
bond making and bond breaking processes that are involved in
the insertion process. It is interesting to note that while other
6
(a) M. Lee, S. Ko and S. Chang, J. Am. Chem. Soc., 2000, 122, 12011;
(
b) K. Mori, M. Tano, T. Mizugaki, K. Ebitani and K. Kaneda,
24
25
metal oxo systems such as OsO
been shown to undergo Si–H addition across dioxo ligands
3 + 2], we do not detect Si–H insertion into the oxo ligand for
this monooxo rhenium(V) complex 1, nor for other mono-oxo
4
and Re(O)
2
(I)(PPh
3
)
2
have
New J. Chem., 2002, 26, 1536; (c) Y. Lee, D. Semoon, S. Kim, H.
Han, S. Chang and P. H. Lee, J. Org. Chem., 2004, 69, 1741.
H. Tan, A. Yoshikawa, M. S. Gordon and J. H. Espenson,
Organometallics, 1999, 18, 4753.
7
8
9
[
W. Adam, C. M. Mitchell, C. R. Saha-M o¨ ller and O. Weichold, J. Am.
Chem. Soc., 1999, 121, 2097.
26
systems.
U. Schubert and C. Lorenz, Inorg. Chem., 1997, 36, 1258.
1
1
0 E. A. Ison, R. A. Corbin and M. M. Abu-Omar, J. Am. Chem. Soc.,
2
005, 127, 11938.
1 T. W. Greene, P. G. Wuts, Protective Groups in Organic Synthesis, 2nd
edn, John Wiley and Sons, New York, 1991.
1
1
2 S. Kim and H. Chang, Bull. Chem. Soc. Jpn., 1985, 58, 3669.
3 B. A. D’Sa, D. McLeod and J. G. Verkade, J. Org. Chem., 1997, 62,
5
057.
1
4 (a) For Ir catalysts, see: X.-L. Luo and R. H. Crabtree, J. Am. Chem.
Soc., 1989, 111, 2527; (b) L. D. Field, B. A. Messerle, M. Rehr, L. P.
Soler and T. W. Hambley, Organometallics, 2003, 22, 2387.
+
1
1
1
1
1
2
5 For [CpFe(CO)(PPh
3
)] , see: S. Chang, E. Scharrer and M. Brookhart,
J. Mol. Catal. A: Chem., 1998, 130, 107.
6 J. M. Blackwell, K. L. Foster, V. H. Beck and W. E. Piers, J. Org. Chem.,
1
999, 64, 4887.
7 L. D. McPherson, M. Drees, S. I. Khan, T. Strassner and M. M. Abu-
Omar, Inorg. Chem., 2004, 43, 4036.
8 (a) J. B. Lambert, L. Kania and S. Zhang, Chem. Rev., 1995, 95, 1191;
(
b) C. A. Reed, Acc. Chem. Res., 1998, 31, 325.
9 R. Murugavel, V. Chandrasekhar and H. W. Roesky, Acc. Chem. Res.,
1
996, 29, 183.
0 E. A. Ison, E. R. Trivedi, R. A. Corbin and M. M. Abu-Omar, J. Am.
Chem. Soc., 2005, 127, 15374.
Scheme 1 Postulated mechanism for rhenium-catalyzed hydrolysis and
alcoholysis of organic silanes.
21 (a) J. H. Espenson, Chemical Kinetics and Reaction Mechanisms,
McGraw Hill, New York, 2002, p. 229; (b) L. Spialter, L. Pazdernik, S.
Bernstein, W. A. Swansiger, G. R. Buell and M. E. Freeburger, J. Am.
Chem. Soc., 1971, 93, 5682.
Another indistinguishable mechanism would involve a rate-
determining oxidative addition of the organosilane to give a
transient rhenium(VII) complex (Scheme 1). Water or alcohol
would attack the electrophilic Si atom on rhenium to give
2
2
2 F. K. Cartledge, Organometallics, 1983, 2, 425.
3 L. Spialter, W. Swansiger, L. Pazdernik and M. Freeburger,
J. Organomet. Chem., 1971, 27, C25.
2
2
4 K. Valliant-Saunders, E. Gunn, G. R. Shelton, D. A. Hrovat, Weston,
T. Borden and J. M. Mayer, Inorg. Chem., 2007, 46, 5212.
5 K. A. Nolin, J. R. Krumper, M. D. Pluth, R. G. Bergman and F. D.
Toste, J. Am. Chem. Soc., 2007, 129, 14684.
silanol or silyl ether, respectively. The cycle is completed by H
2
formation from the reaction of the rhenium oxo hydride and
+
H . Cationic rhenium(VII) has been characterized for this ligand
26 (a) G. Du and M. M. Abu-Omar, Curr. Org. Chem., 2008, 12, 1185;
b) G. Du, P. E. Fanwick and M. M. Abu-Omar, J. Am. Chem. Soc.,
(
2
system in the context of atom transfer reactions, and indeed the
resulting rhenium(VII) species was shown to exhibit electrophilic
007, 129, 5180.
2
7 E. A. Ison, J. E. Cessarich, N. E. Travia, P. E. Fanwick and M. M.
Abu-Omar, J. Am. Chem. Soc., 2007, 129, 1167.
27
reactivity.
This journal is © The Royal Society of Chemistry 2009
Dalton Trans., 2009, 2850–2855 | 2855