nized the need of developing a nonaqueous workup method
of TBAF deprotection, not only because such a method
should eliminate the labor-intensive step but also because
such a method might allow us to achieve the conversion of
the enone 1a to the polycyclic ketal 3a without isolation of
the intermediate 2a. Herein, we report an operationally
simple, efficient, and versatile workup protocol for TBAF-
mediated desilylation.
Scheme 1. Transformation of 1a to 3a
Related to the current work, we noticed two relevant
methods known in the literature. First, Craig and Everhart
used sodium perchlorate, to remove excess TBAF as the
insoluble tetra-n-butylammonium perchlorate salt.9 Second,
Parlow, Vazquez, and Flynn reported the simultaneous use
of a calcium sulfonate resin with a sulfonic acid resin.10 We
appreciated an appealing future for both methods but, at the
same time, recognized some room for improvement.11
At the outset of our work, we envisioned the possibility
of removing the tetrabutylammonium cation with the use of
acidic ion-exchange resin. To test this possibility, we treated
TBAF in THF with excess sulfonic acid resin at room
temperature, removed the resin by filtration, and evaporated
1
the filtrate. A H NMR analysis of the residue showed that
only a small portion of TBAF was removed by this operation,
thereby suggesting that sulfonic acid resin alone cannot drive
eq 1 toward the right side (Scheme 2). On the basis of this
tensive extraction was required, to obtain 2a free from excess
TBAF and materials derived from TBAF. Thus, we recog-
(3) For the first isolation of the halichondrins from a marine sponge
Halichondria okadai Kadota, see: (a) Uemura, D.; Takahashi, K.; Yama-
moto, T.; Katayama, C.; Tanaka, J.; Okumura, Y.; Hirata, Y. J. Am. Chem.
Soc. 1985, 107, 4796-4798. (b) Hirata, Y.; Uemura, D. Pure Appl. Chem.
1986, 58, 701-710. For isolation of the halichondrins from different species
of sponges, see: (c) Pettit, G. R.; Herald, C. L.; Boyd, M. R.; Leet, J. E.;
Dufresne, C.; Doubek, D. L.; Schmidt, J. M.; Cerny, R. L.; Hooper, J. N.
A.; Rutzler, K. C. J. Med. Chem. 1991, 34, 3339-3340. (d) Pettit, G. R.;
Tan, R.; Gao, F.; Williams, M. D.; Doubek, D. L.; Boyd, M. R.; Schmidt,
J. M.; Chapuis, J. C.; Hamel, E.; Bai, R.; Hooper, J. N. A.; Tackett, L. P.
J. Org. Chem. 1993, 58, 2538-2543. (e) Litaudon, M.; Hart, J. B.; Blunt,
J. W.; Lake, R. J.; Munro, M. H. G. Tetrahedron Lett. 1994, 35, 9435-
9438. (f) Litaudon, M.; Hickford, S. J. H.; Lill, R. E.; Lake, R. J.; Blunt,
J. W.; Munro, M. H. G. J. Org. Chem. 1997, 62, 1868-1871.
Scheme 2. Reaction of TBAF and Sulfonic Acid Resin in the
Absence (Eq 1) or Presence (Eq 2) of Calcium Carbonate
(4) For the synthetic work from this laboratory, see: (a) Aicher, T. D.;
Kishi, Y. Tetrahedron Lett. 1987, 28, 3463-3466. (b) Aicher, T. D.; Buszek,
K. R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Matelich, M. C.; Scola, P.
M.; Spero, D. M.; Yoon, S. K.; Kishi, Y. J. Am. Chem. Soc. 1992, 114,
3162-3164. (c) Choi, H.; Demeke, D.; Kang, F-A.; Kishi, Y.; Nakajima,
K.; Nowak, P.; Wan, Z.-K.; Xie, C. Pure Appl. Chem. 2003, 75, 1-17 and
the references cited therein. (d) Namba, K.; Kishi, Y. J. Am. Chem. Soc.
2004, 126, 7770-7771. (e) Namba, K.; Kishi, Y. J. Am. Chem. Soc. 2005,
127, 15382-15383 and references cited therein.
(5) For synthetic work by Salomon, Burke, and Yonemitsu, see: (a) Kim,
S.; Salomon, R. G. Tetrahedron Lett. 1989, 30, 6279-6782. (b) Cooper,
A. J.; Pan, W.; Salomon, R. G. Tetrahedron Lett. 1993, 34, 8193-8196
and the references cited therein. (c) Lambert, W. T.; Hanson, G. H.;
Benayoud, F.; Burke, S. D. J. Org. Chem. 2005, 70, 9382-9398 and the
references cited therein. (d) Horita, K.; Hachiya, S.; Nagasawa, M.; Hikota,
M.; Yonemitsu, O. Synlett 1994, 38-39. (e) Horita, K.; Nagasawa, M.;
Sakurai, Y.; Yonemitsu, O. Chem. Pharm. Bull. 1998, 46, 1199-1216. (f)
Horita, K.; Nishibe, S.; Yonemitsu, O. Phytochem. Phytopharm. 2000, 386-
397 and the references cited therein.
observation, we focused on a method to remove liberated
HF from THF solution. Calcium carbonate (insoluble in
THF) seemed to be an attractive HF scavenger for the
following reasons: (1) the equilibrium should shift toward
the right side because formed CaF2 precipitates out from the
system (CaF2 is insoluble in THF) and (2) the products, i.e.,
CaF2 (insoluble in THF), water, and CO2, can be removed
by filtration and evaporation (see eq 2 in Scheme 2). To test
this possibility experimentally, we treated TBAF in THF in
(8) Compound 2 exists primarily as the intramolecular oxy-Michael
adducts shown below.
(6) For the mechanism of action, see: (a) Bai, R.; Paull, K. D.; Herald,
C. L.; Malspeis, L.; Pettit, G. R.; Hamel, E. J. Biol. Chem. 1991, 266,
15882-15889. (b) Hamel, E. Pharmacol. Ther. 1992, 55, 31-51. (c)
Dabydeen, D. A.; Burnett, J. C.; Bai, R.; Verdier-Pinard, P.; Hickford, S.
J. H.; Pettit, G. R.; Blunt, J. W.; Munro, M. H. G.; Gussio, R.; Hamel, E.
Mol. Pharmacol. 2006, 70, 1866-1875 and the references cited therein.
(d) Luduena, R. F.; Roach, M. C.; Prasad, V.; Pettit, G. R. Biochem.
Pharmacol. 1993, 45, 421-427.
(7) Recently, Jordan and co-workers reported that the primary antimitotic
mechanism of action of halichondrin analogue E7389 is suppression of
microtubule growth. For details, see: Jordan, M. A.; Kamath, K.; Manna,
T.; Okouneva, T.; Miller, H. P.; Davis, C.; Littlefield, B. A.; Wilson, L.
Mol. Cancer Ther. 2005, 4, 1086-1095.
(9) Craig, J. C.; Everhart, E. T. Synth. Commun. 1990, 20, 2147-2150.
(10) Parlow, J. J.; Vazquez, M. L.; Flynn, D. L. Bioorg. Med. Chem.
Lett. 1998, 8, 2391-2394.
(11) For instance, perchlorates are potentially hazardous, whereas calcium
sulfonate resin is not commercially available.
724
Org. Lett., Vol. 9, No. 4, 2007