Journal of the American Chemical Society
Page 4 of 6
(5) Cho, J.; Sarangi, R.; Nam, W. Mononuclear Metal–O2 Complexes
ASSOCIATED CONTENT
Bearing Macrocyclic N-Tetramethylated Cyclam Ligands. Acc. Chem.
Res. 2012, 45, 1321.
1
2
3
4
5
6
7
8
Supporting Information.
Experimental details, Table S1, and Figures S1 – S9. This
material is available free of charge via the Internet at
(6) (a) Sankaralingam, M.; Lee, Y.-M.; Jeon, S. H.; Seo, M. S.; Cho, K.-
B.; Nam, W. A Mononuclear Manganese(III)–Hydroperoxo Com-
plex: Synthesis by Activating Dioxygen and Reactivity in Electro-
philic and Nuclerophilic Reactions. Chem. Commun. 2018, 54, 1209.
(b) Shin, B.; Sutherlin, K. D.; Ohta, T.; Ogura, T.; Solomon, E. I.;
Cho, J. Reactivity of a Cobalt(III)−Hydroperoxo Complex in Elec-
trophilic Reactions. Inorg. Chem. 2016, 55, 12391. (c) Wang, C.-C.;
Chang, H.-C.; Lai, Y.-C.; Fang, H.; Li, C.-C.; Hsu, H.-K.; Li, Z.-Y.;
Lin, T.-S.; Kuo, T.-S.; Neese, F.; Ye, S.; Chiang, Y.-W.; Tsai, M.-L.;
Liaw, W.-F.; Lee, W.-Z. A Structurally Characterized Nonheme Co-
balt–Hydroperoxo Complex Derived from Its Superoxo Intermedi-
ate via Hydrogen Atom Abstraction. J. Am. Chem. Soc. 2016, 138,
14186. (d) Tcho, W.-Y.; Wang, B.; Lee, Y.-M.; Cho, K.-B.; Shearer,
J.; Nam, W. A Mononuclear Nonheme Cobalt(III)–Hydroperoxide
Complex with an Amphoteric Reactivity in Electrophilic and Nucle-
ophilic Oxidative Reactions. Dalton Trans. 2016, 45, 14511. (e) Kim,
S.; Ginsbach, J. W.; Lee, J. Y.; Peterson, R. L.; Liu, J. J.; Siegler, M.
A.; Sarjeant, A. A.; Solomon, E. I.; Karlin, K. D. Amine Oxidative
N-Dealkylation via Cupric Hydroperoxide Cu-OOH Homolytic
Cleavage Followed by Site-Specific Fenton Chemistry. J. Am. Chem.
Soc. 2015, 137, 2867. (f) So, H.; Park, Y. J.; Cho, K.-B.; Lee, Y.-M.;
Seo, M. S.; Cho, J.; Sarangi, R.; Nam, W. Spectroscopic Characteri-
zation and Reactivity Studies of a Mononuclear Nonheme Mn(III)–
Hydroperoxo Complex. J. Am. Chem. Soc. 2014, 136, 12229.
AUTHOR INFORMATION
Corresponding Author
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by the NRF of Korea through CRI
(NRF-2012R1A3A2048842 to W.N) and Basic Science Re-
search Program (2017R1D1A1B03029982 to Y.M.L. and
2017R1D1A1B03032615 to S.F.) and the Grants-in-Aid (no.
16H02268 to S.F.) from MEXT.
REFERENCES
(7) (a) Barman, P.; Upadhyay, P.; Faponle, A. S.; Kumar, J.; Nag, S. S.;
Kumar, D.; Sastri, C. V.; de Visser, S. P. Deformylation Reaction by
a Nonheme Manganese(III)–Peroxo Complex via Initial Hydrogen-
Atom Abstraction. Angew. Chem., Int. Ed. 2016, 55, 11091. (b) Rein-
hard, F. G. C.; Barman, P.; Mukherjee, G.; Kumar, J.; Kumar, D.;
Kumar, D.; Sastri, C. V.; de Visser, S. P. Keto−Enol Tautomeriza-
tion Triggers an Electrophilic Aldehyde Deformylation Reaction by
a Nonheme Manganese(III)-Peroxo Complex. J. Am. Chem. Soc.
2017, 139, 18328.
(1) (a) Nam, W. Dioxygen Activation by Metalloenzymes and Models.
Acc. Chem. Res. 2007, 40, 465. (b) Que, L., Jr. 60 Years of Dioxygen
Activation. J. Biol. Inorg. Chem. 2017, 22, 171. (c) Solomon, E. I.;
Goudarzi, S.; Sutherlin, K. D. O2 Activation by Non-Heme Iron En-
zymes. Biochemisty 2016, 55, 6363. (d) Jasniewski, A. J.; Que, L., Jr.
Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxy-
gen Adducts, High-Valent Intermediates, and Related Model Com-
plexes. Chem. Rev. 2018, 118, 2554.
(8) Rohde, J.-U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski,
M. R.; Stubna, A.; Münck, E.; Nam, W.; Que, L., Jr. Crystallograph-
ic and Spectroscopic Characterization of a Nonheme Fe(IV)=O
Complex. Science 2003, 299, 1037.
(2) (a) Guo, M.; Corona, T.; Ray, K.; Nam, W. Heme and Nonheme
High-Valent Iron and Manganese Oxo Cores in Biological and
Abiological Oxidation Reactions. ACS Cent. Sci. 2019, 5, 13. (b)
Hong, S.; Lee, Y.-M.; Ray, K.; Nam, W. Dioxygen Activation
Chemistry by Synthetic Mononuclear Nonheme Iron, Copper and
Chromium Complexes. Coord. Chem. Rev. 2017, 334, 25. (c) Sahu, S.;
Goldberg, D. P. Activation of Dioxygen by Iron and Manganese
Complexes: A Heme and Nonheme Perspective. J. Am. Chem. Soc.
2016, 138, 11410. (d) Mondal, B.; Roy, L.; Neese, F.; Ye, S. High-
Valent Iron–Oxo and –Nitrido Complexes: Bonding and Reactivity.
Isr. J. Chem. 2016, 56, 763. (e) Engelmann, X.; Monte-Pérez, I.; Ray,
K. Oxidation Reaction with Bioinspired Mononuclear Non-Heme
Metal–Oxo Complexes. Angew. Chem., Int. Ed. 2016, 55, 7632. (f)
Nam, W. Synthetic Mononuclear Nonheme Iron−Oxygen Interme-
diates. Acc. Chem. Res. 2015, 48, 2415. (g) Cook, S. A.; Borovik, A. S.
Molecular Designs for Controlling the Local Environments around
Metal Ions. Acc. Chem. Res. 2015, 48, 2407.
(3) (a) Cho, J.; Jeon, S.; Wilson, S. A.; Liu, L. V.; Kang, E. A.; Braymer,
J. J.; Lim, M. H.; Hedman, B.; Hodgson, K. O.; Valentine, J. S.;
Solomon, E. I.; Nam, W. Structure and Reactivity of a Mononuclear
Non-Haem Iron(III)–Peroxo Complex. Nature 2011, 478, 502. (b)
Liu, L. V.; Hong, S.; Cho, J.; Nam, W.; Solomon E. I. Comparison
of High-Spin and Low-Spin Nonheme FeIII–OOH Complexes in O–
O Bond Homolysis and H-Atom Abstraction Reactivities. J. Am.
Chem. Soc. 2013, 135, 3286. (c) Kim, Y. M.; Cho, K.-B.; Cho, J.;
Wang, B.; Li, C.; Shaik, S.; Nam, W. A Mononuclear Non-Heme
High-Spin Iron(III)–Hydroperoxo Complex as an Active Oxidant in
Sulfoxidation Reactions. J. Am. Chem. Soc. 2013, 135, 8838. (d) Fap-
onle, A. S.; Quesne, M. G.; Sastri, C. V.; Banse, F.; de Visser, S. P.
Differences and Comparisons of the Properties and Reactivities of
Iron(III)–Hydroperoxo Complexes with Saturated Coordination
Sphere. Chem.–Eur. J. 2015, 21, 1221. (e) Wang, C.; Chen, H. Con-
vergent Theoretical Prediction of Reactive Oxidant Structures in
Diiron Arylamine Oxygenases AurF and CmII: Peroxo or Hydrop-
eroxo? J. Am. Chem. Soc. 2017, 139, 13038.
(9) (a) Klinman, J. P.; Offenbacher, A. R. Understanding Biological
Hydrogen Transfer Through the Lens of Temperature Dependent
Kinetic Isotope Effects. Acc. Chem. Res. 2018, 51, 1966. (b) Meisner,
J.; Kästner, J. Atom Tunneling in Chemistry. Angew. Chem., Int. Ed.
2016, 55, 5400. (c) Kohen, A. Role of Dynamics in Enzyme Cataly-
sis: Substantial versus Semantic Controversies. Acc. Chem. Res. 2015,
48, 466. (d) Layfield, J. P.; Hammes-Schiffer, S. Hydrogen Tunneling
in Enzymes and Biomimetic Models. Chem. Rev. 2014, 114, 3466. (e)
Klinman, J. P. A New Model for the Origin of Kinetic Hydrogen
Isotope Effects. J. Phys. Org. Chem. 2010, 23, 606. (f) Nagel, Z. D.;
Klinman, J, P. Tunneling and Dynamics in Enzymatic Hydride
Transfer. Chem. Rev. 2006, 106, 3095.
(10) (a) Mayer, J. M. Understanding Hydrogen Atom Transfer: Form
Bond Strengths to Marcus Theory. Acc. Chem. Res. 2011, 44, 36. (b)
Bowring, M. A.; Bradshaw, L. R.; Parada, G. A.; Pollock, T. P.; Fer-
nández-Terán, R. J.; Kolmar, S. S.; Mercado, B. Q.; Schlenker, C.
W.; Gamelin, D. R.; Mayer, J. M. Activationless Multiple-Site Con-
certed Proton−Electron Tunneling. J. Am. Chem. Soc. 2018, 140,
7449.
(11) (a) Mandal, D.; Mallick, D.; Shaik, S. Kinetic Isotope Effect Deter-
mination Probes the Spin of the Transition State, Its Stereochemis-
try, and Its Ligand Sphere in Hydrogen Abstraction Reactions of
Oxoiron(IV) Complexes. Acc. Chem. Res. 2018, 51, 107. (b) Klein, J.
E. M. N.; Mandal, D.; Ching, W.-M.; Mallick, D.; Que, L., Jr.;
Shaik, S. Privileged Role of Thiolate as the Axial Ligand in Hydro-
gen Atom Transfer Reactions by Oxoiron(IV) Complexes in Shaping
the Potential Energy Surface and Inducing Significant H-Atom Tun-
neling. J. Am. Chem. Soc. 2017, 139, 18705. (c) Mallick, D.; Shaik, S.
Kinetic Isotope Effect Probes the Reactive Spin State, As Well As the
Geometric Feature and Constitution of the Transition State during
H-Abstraction by Heme Compound II Complexes. J. Am. Chem. Soc.
2017, 139, 11451. (d) Mandal, D.; Shaik, S. Interplay of Tunneling,
Two-State Reactivity, and Bell–Evans–Polanyi Effects in C–H Acti-
vation by Nonheme Fe(IV)O Oxidants. J. Am. Chem. Soc. 2016, 138,
2094. (e) Mandal, D.; Ramanan, R.; Usharani, D.; Janardanan, D.;
Wang, B.; Shaik, S. How Does Tunneling Contribute to Counterin-
(4) Sankaralingam, A.; Lee, Y.-M.; Nam, W.; Fukuzumi, S. Amphoteric
Reactivity of Metal–Oxygen Complexes in Oxidation Reactions.
Coord. Chem. Rev. 2018, 365, 41.
ACS Paragon Plus Environment