115.44, 118.57, 122.13, 124.55, 125.63, 127.74, 128.19, 128.51, 134.25,
153.03 and 158.14.
8 X-Ray diffraction analysis at 100 K of crystals of 4-R: C30H34N4O5,
triclinic, space group P1, a = 9.0758(5), b = 9.2281(5), c = 9.3635(5) A,
a = 64.225(1), b = 81.697(1), g = 70.4350(1)1, V = 665.42(6) A3,
Z = 1, (Z0 = 1), FM = 530.61, dc = 1.324 g cmꢀ3, m(Mo-Ka) =
0.91 mꢀ1
, F(000) = 282. The intensities of 8160 reflections
were measured with a Bruker Smart APEX II CCD diffractometer
(l(Mo-Ka) = 0.71072 A, 2y o 581) and 3554 independent reflections
(Rint = 0.0193) were used in the further refinement. The structure was
solved by direct methods and refined using the full-matrix least-squares
technique against F2 in the anisotropic–isotropic approximation. The
hydrogen atoms were located from a Fourier density synthesis. The
refinement converged to wR2 = 0.0864 and GOF = 1.021 for all
independent reflections (R1 = 0.0321 was calculated against F for 3478
observed reflections with I 4 2s(I)). All calculations were performed
using SHELXTL PLUS 5.0.z
1 (a) J. M. Brunel, Chem. Rev., 2005, 105, 857–897; (b) Y.
Chen, S. Yekta and A. K. Yudin, Chem. Rev., 2003, 103,
3155–3211.
Fig. 1 A general view of 4-R.
2 (a) F. Toda, K. Tanaka and S. Nagamatsu, Tetrahedron Lett., 1984,
25, 4929–4932; (b) F. Toda and K. Mori, J. Chem. Soc., Chem.
Commun., 1986, 1357–1359; (c) F. Toda, K. Mori, Z. Stein and
I. Goldberg, J. Org. Chem., 1988, 53, 308–312; (d) F. Toda, K. Mori,
Z. Stein and I. Goldberg, Tetrahedron Lett., 1989, 30, 1841–1844;
(e) F. Toda, K. Tanaka and H. Sawada, J. Chem. Soc., Perkin
Trans. 1, 1995, 3065–3066; (f) J. Liao, X. X. Sun, X. Cui, K. B. Yu,
J. Zhu and J. G. Deng, Chem.–Eur. J., 2003, 9, 2611–2615.
3 (a) J. Deng, Y. Chi, F. Fu, X. Cui, K. Yu, J. Zhu and Y. Jiang,
Tetrahedron: Asymmetry, 2000, 11, 1729–1732; (b) G. P. Singh,
H. M. Godbole, N. Maddireddy, S. G. Tambe, S. P. Nehate and
H. S. Jadhav, World Pat., 2008, WO 2008/004245.
the crystal also contains one molecule of H2O per unit cell.
The absolute configuration of (1R,5R)-(+)-1 was deduced
from the known absolute configuration of R-(+)-BINOL.
Previously, the absolute configuration of (1R,5R)-(+)-1 was
determined by a covalent diastereomeric derivative of its
precursor with a chiral auxiliary of known configuration.7a
Thus, an efficient method for resolving 1 has been developed.
The more active (+)-enantiomer of 1 is now easily accessible on
a large scale for biological and clinical studies.
4 X. M. Feng, D. C. Zeng, Z. Li and Y. Z. Jiang, Chin. Chem. Lett.,
1999, 10, 559–562.
We are grateful to JSC ‘‘Olainfarm’’ (Olaine, Latvia) for
financial support. This work was also supported by the Russian
Foundation for Basic Research (grant 09-03-00537a) and the
Russian Academy of Sciences.
5 A. A. Prokopov, A. S. Berlyand and N. V. Kostebelov, Pharm.
Chem. J., 2001, 35, 533–534.
6 A. N. Kravchenko, Dr. Chem. Sci. thesis, Zelinsky Institute of
Organic Chemistry, Moscow, 2007.
7 (a) R. G. Kostyanovsky, K. A. Lyssenko, G. K. Kadorkina,
O. V. Lebedev, A. N. Kravchenko, I. I. Chervin and
V. R. Kostyanovsky, Mendeleev Commun., 1998, 8, 231–233;
(b) R. G. Kostyanovsky, K. A. Lyssenko, A. N. Kravchenko,
O. V. Lebedev, G. K. Kadorkina and V. R. Kostyanovsky, Mendeleev
Commun., 2001, 11, 134–136; (c) R. G. Kostyanovsky,
G. K. Kadorkina, K. A. Lyssenko, V. Yu. Torbeev,
A. N. Kravchenko, O. V. Lebedev, G. V. Grintselev-Knyazev and
V. R. Kostyanovsky, Mendeleev Commun., 2002, 12, 6–8;
(d) R. G. Kostyanovsky, V. R. Kostyanovsky, G. K. Kadorkina
and V. Yu. Torbeev, New routes to chiral drugs, in Nitrogen-
Containing Heterocycles and Alkaloids, ed. V. G. Kartsev and
G. A. Tolstikov, Iridium Press, Moscow, 2001, pp. 132–136.
8 (a) A. N. Kravchenko, A. C. Sigachev, E. Yu. Maksareva,
G. A. Gazieva, N. C. Trunova, B. V. Lozhkin, T. S. Pivina,
M. M. Il’in, K. A. Lyssenko, Yu. V. Nelyubina, V. A. Davankov,
O. V. Lebedev, N. N. Makhova and V. A. Tartakovsky, Izv. Akad.
Nauk, Ser. Khim., 2005, 680–692; (b) A. N. Kravchenko,
A. C. Sigachev, E. Yu. Maksareva, G. A. Gazieva,
N. C. Trunova, B. V. Lozhkin, T. S. Pivina, M. M. Il’in,
K. A. Lyssenko, Yu. V. Nelyubina, V. A. Davankov,
O. V. Lebedev, N. N. Makhova and V. A. Tartakovsky, Russ.
Chem. Bull., 2005, 54, 691–704.
References
y Compound (ꢂ)-1: (ꢂ)-3 (25.75 g, 0.13 mol) was dissolved in DMF
(400 ml) and NaH (60% suspension; 12.6 g, 0.315 mol) carefully
added. After stirring for 1 h, MeI (65 ml, 150 g, 1.05 mol) was slowly
added, the temperature rising to 80 1C. At this temperature, the
mixture was stirred for 3 h. The DMF was then evaporated in vacuo,
and the residue dissolved in H2O (100 ml) and extracted with chloro-
form (4 ꢄ 100 ml). The organic phase was dried and evaporated. The
residue was recrystallized from EtOAc–Et2O (1 : 1) to give (ꢂ)-1
(20.5 g, 70%). mp 114–116 1C.
z 4-R (495% de): mp. 147–162 1C; [a]20 (l) (c 1, MeOH): +20 ꢂ 2
(578), +27 ꢂ 2 (546), +108 ꢂ 2 (436) and +196 ꢂ 2 (406).
4-S (495% de): mp. 145–161 1C; [a]20 (l) (c 1, MeOH): ꢀ19 ꢂ 2
(578), ꢀ26 ꢂ 2 (546), ꢀ111 ꢂ 2 (436) and ꢀ195 ꢂ 2 (406).
1H NMR of 4-R (CD3OD): 1.15 (t, 6H, 2CH2Me, 3J = 7 Hz), 2.89
(s, 6H, 2Me), 3.27, 3.42 (m, 4H, 2CH2), 5.15 (s, 2H, 2CH), 7.00 (d, 2H,
HAr, 3J = 8 Hz), 7.14 (t, 2H, HAr, 3J = 8 Hz), 7.23 (t, 2H, HAr, 3J =
8 Hz), 7.27 (d, 2H, HAr, 3J = 8 Hz), 7.81 (d, 2H, HAr, 3J = 8 Hz) and
7.85 (d, 2H, HAr,
3J = 8 Hz). 13C NMR: 13.28, 29.9, 37.44, 69.59,
ꢃc
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2010
404 | New J. Chem., 2010, 34, 403–404