A. T. Anilkumar et al. / Tetrahedron: Asymmetry 10 (1999) 2501–2503
2503
Furthermore, the enantiomeric ratio (E value)15 was calculated to be >500, showing excellent kinetic
resolution. Thus, this result shows that CAL-B is an exceptionally stable enzyme in the solvents examined
for the alcoholysis of (ꢀ)-2. As for the alcoholysis rate, solvents such as THF, acetone and CHCl
3
(
entries 3–5), which require a relatively longer reaction time to attain 50% conversion, are somewhat
less preferable.
A preparative reaction was carried out as follows. To a solution of (ꢀ)-2 (250 mg, 1.07 mmol) and n-
BuOH (0.4 ml, 4.32 mmol) in DIPE:dioxane (1:1, 16 ml) was added CAL-B (200 mg). The mixture was
shaken at 45°C and the progress of the reaction was monitored by GC. When the conversion reached 50%,
the lipase was filtered off. The products were purified by silica gel column chromatography to provide
2
0
(
4
+)-(1S,2R)-3 [89 mg, 43% yield, >99% ee, [α] +38.3 (c 0.84, EtOH)] and (+)-(1R,2S)-2 [120 mg,
D
20
8% yield, 99% ee, [α]D +76.2 (c 1.35, CHCl )]. The absolute configurations of the resolved products
were assigned after their conversion into the corresponding aminoalcohols and comparison of the specific
rotations with the literature values. Thus, the basic hydrolysis of (+)-2 and (+)-3 provided (+)-(1R,2S)-1
3
7
and (−)-(1S,2R)-1, respectively, without any racemization, establishing their absolute configurations as
shown in Scheme 1.
In conclusion, the present procedure represents a direct and practical access to both enantiomers of
cis-1-amino-2-indanol (−)-(1S,2R)- and (+)-(1R,2S)-1, a medicinally and chemically useful component,
in an enantiomerically pure form through CAL-B-mediated alcoholysis.
Acknowledgements
We gratefully acknowledge financial support from the Japan Science and Technology Corporation
(JST) in the form of an STA fellowship (ID number 296137) to A. T. Anilkumar and the generous gift of
various enzymes by Boehringer Mannheim GmbH and Amano Pharmaceutical Co. Ltd.
References
1
. Vacca, J. P.; Dorsey, B. D.; Schleif, W. A.; Levin, R. B.; Mcdaniel, S. L.; Darke, P. L.; Zugay, J.; Quintero, J. C.; Blahy,
O. M.; Roth, E.; Sardana, V. V.; Schlabach, A. J.; Graham, P. I.; Condra, J. H.; Gotlib, L.; Holloway, M. K.; Lin, J.; Chen,
I.-W.; Vastag, K.; Ostovic, D.; Anderson, P. S.; Emini, E. A.; Huff, J. R. Proc. Natl. Acad. Sci. USA 1994, 91, 4096–4101.
. Reider, P. J. Chimia 1997, 51, 306–308.
2
3
. For a review of the synthesis and applications of cis-1-amino-2-indanol, see Gosh, A. K.; Fidanze, S.; Senanayake, C. H.
Synthesis 1998, 937–961.
4
. Senanayake, C. H.; Roberts, F. E.; DiMichele, L. M.; Ryan, K. M.; Liu, J.; Fredenburgh, L. E.; Foster, B. S.; Douglas, A.
W.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Tetrahedron Lett. 1995, 36, 3993–3996.
. Kajiro, H.; Mitamura, S.; Mori, A.; Hiyama, T. Synlett 1998, 51–52.
5
6
7
8
9
. Takahashi, M.; Ogasawara, K. Synthesis 1996, 954–958.
. Gosh, A. K.; Kincaid, J. F.; Haske, M. G. Synthesis 1997, 541–544.
. Igarashi, Y.; Otsutomo, S.; Harada, M.; Nakano, S.; Watanabe, S. Synthesis 1997, 549–552.
. Didier, E.; Loubinoux, B.; Ramos Tombo, G. M.; Rihs, G. Tetrahedron 1991, 47, 4941–4958.
1
1
0. Aleu, J.; Fronza, G.; Fuganti, C.; Perozzo, V.; Serra, S. Tetrahedron: Asymmetry 1998, 9, 1589–1596.
1. Boyd, D. R.; Sharma, N.; Bowers, N. I.; Goodrich, P. A.; Groocock, M. R.; Blacker, A. J.; Clarke, D. A.; Howard, T.;
Dalton, H. Tetrahedron: Asymmetry 1996, 7, 1559–1562.
1
1
1
1
2. Luna, A.; Astorga, C.; Fülöp, F.; Gotor, V. Tetrahedron: Asymmetry 1998, 9, 4483–4487, and references cited therein.
3. Lehr, P.; Billich, A.; Charpiot, B.; Ettmayer, P.; Scholz, D.; Rosenwirth, B.; Gstach, H. J. Med. Chem. 1996, 39, 2060–2067.
4. Laane, C.; Boeren, S.; Vos, K.; Veeger, C. Biotechnol. Bioeng. 1987, 30, 81–87.
5. Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1982, 104, 7294–7299.