CELLULOSE STABILIZED FE3O4 AND CARBOXYLATE-IMIDAZOLE AND CO-BASED MOF
9 of 10
advantages in terms of cost-effectiveness and simplicity,
low temperature and very short reaction time. Addition-
ally, it consumes very short reaction time and mild condi-
tions in the Knoevenagel condensation compared with
[7] F. Talebi, Z. Rafiee, Polym. Bull. 2019. In press
[
[
8] M. Rasekh, Z. Rafiee, High Perform. Polymer 2019. In press
9] E. A. Campos, D. V. B. S. Pinto, J. I. S. de Oliveira,
E. d. C. Mattos, R. d. C. L. Dutra, J. Aerosp. Technol. Manag.
2015, 7, 267.
[44–46]
the literature.
[
10] H. Karimi-Maleh, M. Shafieizadeh, M. A. Taher, F. Opoku,
E. M. Kiarii, P. P. Govender, S. Ranjbari, M. Rezapour,
Y. Orooji, J. Mol. Liq. 2019, 112040.
4
| CONCLUSIONS
[11] H. Karimi-Maleh, C. T. Fakude, N. Mabuba, G. M. Peleyeju,
O. A. Arotiba, J. Colloid Interface Sci. 2019, 554, 603.
[
[
12] E. Rahmati, Z. Rafiee, New J. Chem. 2019, 43, 8492.
13] S. Vaysipour, M. Nasr-Esfahani, Z. Rafiee, Appl. Organomet.
Chem. 2019, e5090.
14] A. Ali, H. Zafar, M. Zia, I. U. Haq, A. R. Phull, J. Sarfraz Ali,
A. Hussain, Nanotechnol. Sci. Appl. 2016, 9, 49.
In this study, the synthesis, characterization and catalytic
application of Co-MOF-coated magnetic regenerated cel-
lulose-coated nanoparticles were reported. The FTIR,
EDX and STA analyses successfully confirmed the good
immobilization and high stability of organic linkers (ter-
[
[
15] N. Zhu, H. Ji, P. Yu, J. Niu, M. U. Farooq, M. W. Akram,
I. O. Udego, H. Li, X. Niu, Nanomaterials 2018, 8, 810.
2+
ephthalic acid and IM) and inorganic constituent (CO )
onto the surface of Fe O . The SEM and TEM images
[16] S. Gui, X. Shen, B. Lin, Rare Met. 2006, 25, 426.
3
4
[
17] B. Kakavandi, A. J. Jafari, R. R. Kalantary, S. Nasseri,
A. Ameri, A. Esrafily, J. Environ. Health Sci. Eng. 2013, 10, 19.
18] M. Muthiah, I. K. Park, C. S. Cho, Biotechnol. Adv. 2013, 31,
exhibited that the Co-MOF particles are well dispersed
on the surface of cellulose. The VSM technique displayed
good magnetic properties for Fe O /cellulose/Co-MOF.
[
3
4
1224.
The prepared novel nanocomposite was successfully
applied as an effective heterogeneous catalyst in the
Knoevenagel condensation for the synthesis of
benzylidenemalononitrile derivatives in high yields. The
catalyst was easily recovered and reused without a signifi-
cant decrease in activity. The other features of the present
study include straightforward preparation of the catalyst,
accomplishing reaction at room temperature, solvent-free
media, low loading of catalyst and short reaction time.
[
[
19] A. Maleki, M. Kamalzare, Cat. Com. 2014, 53, 67.
20] X. Zhao, H. Li, A. Ding, G. Zhou, Y. Sun, D. Zhang, Mater.
Lett. 2016, 163, 154.
[21] Q. Lu, Y. Zhang, H. Hu, W. Wang, Z. Huang, D. Chen,
M. Yang, J. Liang, Nanomaterials 2019, 9, 275.
[
[
[
22] S. T. Meek, J. A. Greathouse, M. D. Allendorf, Adv. Mater.
011, 23, 249.
23] H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev. 2012,
12, 673.
24] R. Zhu, J. Ding, L. Jin, H. Pang, Coord. Chem. Rev. 2019,
389, 119.
2
1
This work provides a combination of modified Fe O4
3
nanoparticles with MOF will be more powerful catalysts.
[25] H. Furukawa, K. E. Cordova, M. OKeeffe, O. M. Yaghi, Science
013, 341. 1230444
2
[
26] S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue,
ACKNOWLEDGEMENTS
We are grateful to Yasouj University for financial
assistance.
H. Pang, Adv. Energy Mater. 2017, 7. 1602733
[27] M. Yousefian, Z. Rafiee, Carbohydr. Polym. 2020, 228. 115393
[28] S. Zhu, J. Ge, C. Liu, W. Xing, EnergyChem 2019, 1, 100018.
[29] Z. Zhao, J. Ding, R. Zhu, H. Pang, J. Mater. Chem. A 2019, 7,
ORCID
1
5519.
30] Y. Zheng, S. Zheng, H. Xue, H. Pang, Adv. Funct. Mater. 2018,
8. 1804950
[
2
REFERENCES
[
1] D. Nunes, A. Pimentel, L. Santos, P. Barquinha, L. Pereira,
E. Fortunato, R. Martins, R. Martins, Metal oxide
nanostructures synthesis, properties and applications, Elsevier
[
32] S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar,
Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang,
L. Zhang, Y. Fang, J. Li, H. C. Zhou, Adv. Mater. 2018.
2
019.
1
704303
33] S. Gao, N. Zhao, M. Shu, S. Che, Appl. Catal. A. Gen. 2010,
88, 196.
[
[
[
2] X. Li, J. Wei, Q. Li, S. Zheng, Y. Xu, P. Du, C. Chen, J. Zhao,
H. Xue, Q. Xu, H. Pang, Adv. Funct. Mater. 2018, 28. 1800886
3] H. Karimi-Maleh, O. A. Arotiba, J. Colloid Interface Sci. 2020,
[
[
[
3
34] C. Le Calvez, M. Zouboulaki, C. Petit, L. Peevaa, N. Shirshova,
RSC Adv. 2016, 6, 17314.
5
60, 208.
4] H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie,
M. Ranjbar, J. Alizadeh, N. W. Maxakato, A. Abbaspourrad,
New J. Chem. 2019, 43, 2362.
35] C. Lei, J. Gao, W. Ren, Y. Xie, S. Yassin, H. Abdalkarim,
S. Wang, Q. Ni, J. Yao, Carbohydr. Polym. 2019, 205, 35.
36] X. Gao, G. Ji, R. Cui, Z. Liu, Mater. Lett. 2019, 237, 197.
37] F. M. Zhang, J. L. Sheng, Z. D. Yang, X. J. Sun, H. L. Tang,
M. Lu, H. Dong, F. C. Shen, J. Liu, Y. Q. Lan, Angew. Chem.
Int. Ed. 2018, 57, 12106.
[
[
[
5] M. Miraki, H. Karimi-Maleh, M. A. Taher, S. Cheraghi,
F. Karimi, S. Agarwal, V. K. Gupta, J. Mol. Liq. 2019, 278, 672.
6] Z. Shamsadin-Azad, M. A. Taher, S. Cheraghi, H. Karimi-
Maleh, J. Food, Meas. Charact. 2019, 13, 1781.
[