Journal of the American Chemical Society
ARTICLE
injection of detect 2 solution (2 M Tris-HCl, pH 9.0), and data
collection was started after the first 40 ms mixing time and continued
for at least 5τ1/2 of the apparent first order rate constant kb (10ꢀ500 s
total) without interinterval delays. Final pH after detection was
always 9.0. Constants were calculated as described in the Results and
Discussion. Interpretation of the kinetic constant ka may be limited
by the hardware and firmware configurations of the lumimometer.
(2.e) Competitive Wavelength-Resolved Chemiluminescence. Chem-
iluminescent emission time courses from 0.2 pmol/100 μL of both
EcoB1932-1947(-)HICS18 and CalA1185-1206(-)HICS87 probes in
hybridization reagent were acquired simultaneously on a luminometer
modified for dual wavelength-range detection. This luminometer was
equipped with two high-count PMT modules (28 mm diameter, head-
on, bialkali cathode, peak cathode radiant sensitivity at 420 nm; Hama-
matsu Photonics, Hamamatsu City, Japan) on opposite sides of and
directed toward a light-tight detection chamber fitted with injector
tubing from two reagent pumps. Filters {25.4 mm diameter; 417/60
BrightLine bandpass filter (transmits ∼95% of light from 385 to
450 nm) from Semrock, Inc. (Rochester, NY) for AE, and OG550
cut-on filter (transmits ∼90% of light from 550 to 700 nm) from
Newport Corporation (Irvine, CA) for 2,7-dimethoxyAE} were fitted
between PMT 1 and PMT 2, respectively, and the detection chamber.
Custom VisualBasic software controlled reagent injections and chemi-
luminescent data acquisition from the two PMT channels. Hybridiza-
tions were performed substantially as for Chemiluminescent Constants
(above) except an amount of 50 μL of 0 or 200 amol to 200 fmol/50 μL
targets in seawater (0.2 μm filtered; Scripps Institution of Oceanography
Pier, La Jolla, CA) was mixed with 50 μL of 2ꢁ hybridization reagent
containing 0.5 pmol/50 μL of both probes. Chemiluminescence was
initiated by a 200 μL injection of detect 1 solution followed by a 2 s
pause, then a 200 μL injection of detect 2 solution, and data collection
was started immediately from the dual wavelength luminometer for
230 ꢁ 0.8 s intervals (184 s total) without interinterval delays. Final pH
after detection was always 9.0.
Scientific Research (AFOSR) under Award No. FA9550-07-
1-0027 to D.D.D.
’ REFERENCES
(1) (a) Meller, A.; Nivon, L.; Brandin, E.; Golovchenko, J.; Branton,
D. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 1079–1084. (b) Shendure, J.;
Porreca, G. J.; Reppas, N. B.; Lin, X.; McCutcheon, J. P.; Rosenbaum,
A. M.; Wang, M. D.; Zhang, K.; Mitra, R. D.; Church, G. M. Science 2005,
309, 1728–1732. (c) Ozsolak, F.; Platt, A. R.; Jones, D. R.; Reifenberger,
J. G.; Sass, L. E.; McInerney, P.; Thompson, J. F.; Bowers, J.; Jarosz, M.;
Milos, P. M. Nature 2009, 461, 814–818.
(2) (a) Southern, E. M. J. Mol. Biol. 1975, 98, 503–517. (b) Fulton,
R. J.; McDade, R. L.; Smith, P. L.; Kienker, L. J.; Kettman, J. R., Jr. Clin.
Chem. 1997, 43, 1749–1756. (c) Gunderson, K. L.; Steemers, F. J.; Lee,
G.; Mendoza, L. G.; Chee, M. S. Nat. Genet. 2005, 37, 549–554.
(3) (a) Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303–308.
(b) Nelson, N. C.; Cheikh, A. B.; Matsuda, E.; Becker, M. M. Biochem-
istry 1996, 35, 8429–8438. (c) Gaylord, B. S.; Heeger, A. J.; Bazan, G. C.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10954–10957. (d) Storhoff, J. J.;
Lucas, A. D.; Garimella, V.; Bao, Y. P.; M€uller, U. R. Nat. Biotechnol.
2004, 22, 883–887.
(4) Browne, K. A. J. Am. Chem. Soc. 2005, 127, 1989–1994.
(5) Becker, M. M.; Schroth, G. P. U.S. Patent 6,534,274, 2003.
(6) Saiki, R. K.; Gelfand, D. H.; Stoffel, S.; Scharf, S. J.; Higuchi, R.;
Horn, G. T.; Mullis, K. B.; Erlich, H. A. Science 1988, 239, 487–491.
(7) Brentano, S. T.; McDonough, S. H. Nonradioactive Analysis of
Biomolecules; Kessler, C., Ed.; Springer-Verlag: New York, 2000; pp
374ꢀ380.
(8) Nelson, N. C.; Reynolds, M. A.; Arnold, L. J., Jr. Nonisotopic
Probing, Blotting, and Sequencing; Kricka, L. J., Ed.; Academic Press: San
Diego, CA, 1995; pp 391ꢀ428.
(9) (a) Rutter, A. J.; Weeks, I.; Li, Z.; Smith, K. U.S. Patent
7,169,554, 2007. (b) Weeks, I.; Rutter, A. J.; Li, Z.; Smith, K. U.S.
Patent Application 10/570,175, 2007.
(10) Brown, R. C.; Li, Z.; Rutter, A. J.; Mu, X.; Weeks, O. H.; Smith,
K.; Weeks, I. Org. Biomol. Chem. 2009, 7, 386–394.
(11) Campbell, A. K.; Woodhead, J. S.; Weeks, I. U.S. Patent
’ ASSOCIATED CONTENT
4,946,958, 1990.
S
Supporting Information. AE reaction scheme and table
b
(12) Woodhead, J. S.; Weeks, I.; Batmanghelich, S. U.S. Patent
5,656,207, 1997.
(13) Law, S.-J.; Jiang, Q.; Fischer, W.; Unger, J. T.; Krodel, E. K.; Xi,
of linear fit constants and additional experimental details. This
material is available free of charge via the Internet at http://
pubs.acs.org.
J. U.S. Patent 5,879,894, 1999.
(14) Natrajan, A.; Sharpe, D.; Costello, J.; Jiang, Q. Anal. Biochem.
2010, 406, 204–213.
’ AUTHOR INFORMATION
(15) (a) Batmanghelich, S.; Woodhead, J. S.; Smith, K.; Weeks, I.
J. Photochem. Photobiol., A 1991, 56, 249–254. (b) Batmanghelich, S.; Brown,
R. C.; Woodhead, J. S.; Smith, K.; Weeks, I. J. Photochem. Photobiol., B 1992,
12, 193–201. (c) Smith, K.; Yang, J.-J.; Weeks, I.; Woodhead, J. S. J.
Photochem. Photobiol., A 2000, 132, 181–191. (d) Smith, K.; Yang, J.-J.; Li,
Z.; Weeks, I.; Woodhead, J. S. J. Photochem. Photobiol., A 2009, 203, 72–79.(e)
Li, Z. Ph.D. Thesis, University of Wales, Swansea, U.K., 1998.
(16) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164–5173.
(17) (a) Hartz, A.; Cuvelier, M.; Nowosielski, K.; Bonilla, T. D.;
Green, M.; Esiobu, N.; McCorquodale, D. S.; Rogerson, A. J. Environ.
Qual. 2008, 37, 898–905. (b) Papadakis, J. A.; Mavridou, A.; Richardson,
S. C.; Lampiri, M.; Marcelou, U. Water Res. 1997, 31, 799–804.
(18) Johnson, S. J.; Green, D. H.; Reed, D. A.; Wood, L. S. Clin.
Chem. 2001, 47, 760–763.
(19) Hogan, J. J.; Smith, R. D.; Kop, J. A.; McDonough, S. H. U.S.
Patent 5,693,468, 1997.
(20) Hogan, J. J. U.S. Patent 6,821,770, 2004.
(21) Lesnik, E. A.; Freier, S. M. Biochemistry 1998, 37, 6991–6997.
(22) Sproat, B. S.; Lamond, A. I.; Beijer, B.; Neuner, P.; Ryder, U.
Nucleic Acids Res. 1989, 17, 3373–3386.
(23) McCapra, F.; Richardson, D. G.; Chang, Y. C. Photochem.
Photobiol. 1965, 4, 1111–1121.
Corresponding Author
Present Address
^School of Medicine, Cardiff University, Tenovus Building,
Heath Park, Cardiff, Wales CF14 4XN, U.K.
’ ACKNOWLEDGMENT
M. Majlessi, the Oligonucleotide Synthesis Group, A. Maheson,
and T. Luo at Gen-Probe Incorporated have our gratitude for their
syntheses and MS analyses of the nucleic acid constructs presented
in this article. We are also indebted to R. Pacheco for assistance
designing the dual wavelength luminometer and writing custom
data acquisition software. In addition, we thank Molecular Light
Technology Research Limited for supplying 9-(2,6-dibromo-
phenoxycarbonyl)-10-(3-succinimidyloxycarbonylpropyl)acridinium
iodide and 2-(4-dimethylaminophenylazo)-N-[2-(2-iodoacetyl-
amino)ethyl]benzamide. The results of this project are par-
tially based upon work supported by the Air Force Office of
14647
dx.doi.org/10.1021/ja202221h |J. Am. Chem. Soc. 2011, 133, 14637–14648