Communication
ChemComm
cation perovskite materials.39 On a broader scope, the wide
range of possible starting materials for iminium ions – amines
and ketones or aldehydes – allows for targeting specific cation
sizes and shapes that were previously unavailable and may yield
unique new anion topologies and material properties, not only
for halogenido bismuthates, but metalates in general.
9 K. Eckhardt, V. Bon, J. Getzschmann, J. Grothe, F. M. Wisser and
S. Kaskel, Chem. Commun., 2016, 52, 3058–3060.
10 S. M. Jain, D. Phuyal, M. L. Davies, M. Li, B. Philippe, C. De Castro,
Z. Qiu, J. Kim, T. Watson, W. C. Tsoi, O. Karis, H. Rensmo, G. Boschloo,
T. Edvinssonand and J. R. Durrant, Nano Energy, 2018, 49, 614–624.
11 M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger,
M. Yoshita and A. W. Y. Ho-Baillie, Prog. Photovolt. Res. Appl., 2019,
27, 3–12.
12 N. Mercier, N. Louvain and W. Bi, CrystEngComm, 2009, 11, 720–734.
In summary, we show that layered organic–inorganic iodido
bismuthates are available given the right cation: (Me2CQNMe2)Bi2I7
combines a simple synthetic access with a layered anion topology,
low band gap and good stability and thus holds great promise for
material applications. Our computational investigations show a
band gap in good agreement with experiment and characterize it
as a I - s*(Bi–I) transition. Using energy decomposition analysis
for the first time in an inorganic 3D system, we quantitatively and
qualitatively elucidate the IꢀꢀꢀI interactions found as structural
elements with dispersion interactions and polarization of the iodine
atoms as the major bonding contributions. Our results highlight
iminium cations as prime counterion templating candidates for
new metalate materials with unprecedented anion topologies.
This work is funded by the DFG via the SFB 1083. J. H.
thanks Prof. Stefanie Dehnen for her constant support. N. D.
thanks the Fonds der Chemischen Industrie and the Studien-
stiftung des Deutschen Volkes for their support. We thank the
HLR Stuttgart, HRZ Marburg, and Goethe-HLR Frankfurt for
´
13 A. J. Lehner, D. H. Fabini, H. A. Evans, C.-A. Hebert, S. R. Smock,
J. Hu, H. Wang, J. W. Zwanziger, M. L. Chabinyc and R. Seshadri,
Chem. Mater., 2015, 27, 7137–7148.
14 D. B. Mitzi, Inorg. Chem., 2000, 39, 6107–6113.
15 M.-Q. Li, Y.-Q. Hu, L.-Y. Bi, H.-L. Zhang, Y. Wang and Y.-Z. Zheng,
Chem. Mater., 2017, 29, 5463–5467.
¨
16 A. Erkkila, I. Majander and P. M. Pihko, Chem. Rev., 2007, 107,
5416–5470.
17 H. G. Reiber and T. D. Stewart, J. Am. Chem. Soc., 1940, 62, 3026–3030.
18 M. Lamchen, W. Pugh and A. M. Stephen, J. Chem. Soc., 1954, 4418–4425.
19 N. J. Leonard and J. V. Paukstelis, J. Org. Chem., 1963, 28, 3021–3024.
20 L. M. Trefonas, R. L. Flurry Jr., R. Majeste, E. A. Meyers and
R. F. Copeland, J. Am. Chem. Soc., 1966, 88, 2145–2149.
21 R. Hehl and G. Thiele, Z. Anorg. Allg. Chem., 2000, 626, 2167–2172.
22 M. Ruck, Z. Kristallogr., 1995, 210, 650–655.
23 R. Stief and W. Massa, Z. Anorg. Allg. Chem., 2006, 632, 797–800.
24 L. Mao, P. Guo, M. Kepenekian, I. Hadar, C. Katan, J. Even,
R. D. Schaller, C. C. Stoumpos and M. G. Kanatzidis, J. Am. Chem.
Soc., 2018, 140, 13078–13088.
25 T. Li, Y. Hu, C. A. Morrison, W. Wu, H. Han and N. Robertson,
Sustainable Energy Fuels, 2017, 1, 308–316.
26 E. G. Tulsky and J. R. Long, Chem. Mater., 2001, 13, 1149–1166.
27 A. J. Dennington and M. T. Weller, Dalton Trans., 2018, 47, 3469–3484.
28 N. Dehnhardt, H. Borkowski, J. Schepp, R. Tonner and J. Heine,
Inorg. Chem., 2018, 57, 633–640.
¨
computational resources, Jakob Mobs for preparing reference
compounds, Dr Istemi Kuzu for recording the Raman spectrum
and Dr Robert Wilson for helpful discussions.
¨
29 R. Dronskowski and P. E. Blochl, J. Phys. Chem., 1993, 97, 8617–8624.
30 R. F. W. Bader, Chem. Rev., 1991, 91, 893–928.
31 Dispersion interactions are of course electronic in origin as well.
Distinguishing them from the electrostatic and overlap-based terms
in the pEDA nevertheless gives us additional insight into the nature
of the chemical bond.
Conflicts of interest
32 M. Raupach and R. Tonner, J. Chem. Phys., 2015, 142, 194105.
33 L. Pecher and R. Tonner, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2018, e1401.
There are no conflicts to declare.
34 M. P. Mitoraj, A. Michalak and T. Ziegler, J. Chem. Theory Comput.,
2009, 5, 962–975.
References
1 C. C. Stoumpos and M. G. Kanatzidis, Adv. Mater., 2016, 28, 5778–5793. 35 S. Ding and N. Jiao, Angew. Chem., Int. Ed., 2012, 51, 9226–9237.
2 A. K. Jena, A. Kulkarni and T. Miyasaka, Chem. Rev., 2019, 119, 3036–3103. 36 W. Ke, I. Spanopoulos, C. C. Stoumpos and M. G. Kanatzidis, Nat.
3 X. Zhu, Y. Lin, Y. Sun, M. C. Beard and Y. Yan, J. Am. Chem. Soc.,
2019, 141, 733–738.
4 L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee and
E. H. Sargent, Chem. Rev., 2019, 119, 7444–7477.
5 D. B. Mitzi, Chem. Mater., 1996, 8, 791–800.
Commun., 2018, 9, 4785.
37 Q. A. Akkerman, S. G. Motti, A. R. S. Kandada, E. Mosconi,
V. D’Innocenzo, G. Bertoni, S. Marras, B. A. Kamino, L. Miranda,
F. De Angelis, A. Petrozza, M. Prato and L. Manna, J. Am. Chem. Soc.,
2016, 138, 1010–1016.
6 C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, 38 I. Spanopoulos, W. Ke, C. C. Stoumpos, E. C. Schueller, O. Y.
J. I. Jang, J. T. Hupp and M. G. Kanatzidis, Chem. Mater., 2016, 28,
2852–2867.
Kontsevoi, R. Seshadri and M. G. Kanatzidis, J. Am. Chem. Soc.,
2018, 140, 5728–5742.
7 L. Mao, C. C. Stoumpos and M. G. Kanatzidis, J. Am. Chem. Soc., 39 W. Ke, I. Spanopoulos, Q. Tu, I. Hadar, X. Li, G. S. Shekhawat,
2019, 141, 1171–1190.
8 H. Li, R. Wang and H. Sun, Acc. Chem. Res., 2019, 52, 216–227.
V. P. Dravid and M. G. Kanatzidis, J. Am. Chem. Soc., 2019, 141,
8627–8637.
14728 | Chem. Commun., 2019, 55, 14725--14728
This journal is ©The Royal Society of Chemistry 2019