Journal of Medicinal Chemistry
ARTICLE
’ REFERENCES
cecropin A-temporin A hybrid peptide. Protein Pept. Lett. 2000, 7,
349–357.
(24) Wade, D. Unambiguous consensus sequences for temporin-like
chemweb.com/biochem/0204002).
(25) Mangoni, M. L. Temporins, anti-infective peptides with ex-
panding properties. Cell. Mol. Life Sci. 2006, 63, 1060–1069.
(26) Mangoni, M. L.; Rinaldi, A. C.; Di Giulio, A.; Mignogna, G.;
Bozzi, A.; Barra, D.; Simmaco, M. Structure-function relationships of
temporins, small antimicrobial peptides from amphibian skin. Eur. J.
Biochem. 2000, 267, 1447–1454.
(1) (a) Walsh, C. Molecular mechanisms that confer antibacterial
drug resistance. Nature 2000, 406, 775–781.(b) Nicolle, L. E. Infection
control programmes to contain antimicrobial resistance. World Health
Organization: Geneva, 2001; WHO/CDS/CSR/DRS/2001.7 Http://
times. N. Engl. J. Med. 1998, 338, 1376–1378.
(2) Osterholm, M. T. Emerging infectious diseases a real public
health crisis? Postgrad Med. J. 1996, 100, 15-16, 21, 25-26.
(3) Boman, H. G. Peptide antibiotics and their role in innate
immunity. Annu. Rev. Immunol. 1995, 13, 61–92.
(27) Rinaldi, A. C.; Mangoni, M. L.; Rufo, A.; Luzi, C.; Barra, D.; Zhao,
H.; Kinnunen, P. K. J.; Bozzi, A.; Di Giulio, A.; Simmaco, M.; Temporin, L
antimicrobial, hemolytic and cytotoxic activities, and effects on membrane
permeabilization in lipid vesicles. Biochem. J. 2002, 368, 91–100.
(28) Rosenfeld, A.; Barra, D.; Simmaco, M.; Shai, Y.; Mangoni, M. L.
Synergism between temporins toward Gram-negative bacteria over-
comes resistance imposed by the lipopolysaccharide protective layer.
J. Biol. Chem. 2006, 281, 28565–28574.
(29) Carotenuto, A.; Malfi, S.; Saviello, M. R.; Campiglia, P.; Gomez-
Monterrey, I. M.; Mangoni, M. L.; Marcellini Hercolani Gaddi, L.;
Novellino, E.; Grieco, P. A Different Molecular mechanism underlying
antimicrobial and hemolytic actions of temporins A and L. J. Med. Chem.
2008, 51, 2354–2362.
(30) Saviello, M. R.; Malfi, S.; Campiglia, P.; Cavalli, A.; Grieco, P.;
Novellino, E.; Carotenuto, A. New insight into the mechanism of action of
the antimicrobial peptides temporins. Biochemistry 2010, 49, 1477–1485.
(31) Chan, D. I.; Prenner, J. E.; Vogel, H. J. Tryptophan- and
arginine-rich antimicrobial peptides: structures and mechanisms of
action. Biochim. Biophys. Acta 2006, 1758, 1184–1202.
(32) Strandberg, E.; Morein, S.; Rijkers, D. T. S.; Liskamp, R. M. J.;
van der Wel, P. C. A.; Killian, J. A. Lipid dependence of membrane
anchoring properties and snorkeling behavior of aromatic and charged
residues in transmembrane peptides. Biochemistry 2002, 41, 7190–7198.
(33) Unneberg, P.; Merelo, J. J.; Chacon, P.; Moran, F. SOMCD:
method for evaluating protein secondary structure from UV circular
dichroism spectra. Proteins 2001, 42, 460–470.
(4) Hoffmann, J. A.; Kafatos, F. C.; Janeway, C. A.; Ezekowitz, R. A.
Phylogenetic perspectives in innate immunity. Science 1999, 284, 1313–
1318.
(5) Guan-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S. O.;
Teran, L. M. Antimicrobial peptides: general overview and clinical implica-
tions in human health and disease. Clin. Immunol. 2010, 135, 1–11.
(6) Yeaman, M. R.; Yount, N. Y. Mechanism of antimicrobial peptide
action and resistance. Pharmacol. Rev. 2003, 55, 27–55.
(7) Zasloff, M. Antimicrobial peptides of multicellular organisms.
Nature 2002, 415, 389–395.
(8) Hancock, R. E. Cationic peptides: effectors in innate immunity
and novel antimicrobials. Lancet Infect. Dis. 2001, 1, 156–164.
(9) (a) Perron, G. G.; Zasloff, M.; Bell, G. Experimental evolution of
resistance to an antimicrobial peptide. Proc. Biol. Sci. 2006, 273, 251–
256. (b) Zasloff, M. Antimicrobial peptides in health and desease. N.
Engl. J. Med. 2002, 347, 1199–1200.
(10) (a) Jenssen, H.; Hamill, P.; Hancock, R. E. Peptide antimicro-
bial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. (b) Sahl, H. G.;
Bierbaum, G. Lantibiotics: biosynthesis and biological activities of
uniquely modified peptides from Gram-positive bacteria. Annu. Rev.
Microbiol. 1998, 52, 41–79.
(11) Yang, D.; Biragyn, A.; Kwak, L. W.; Oppenheim, J. J. Mamma-
lian defensins in immunity: more than just microbicidal. Trends Im-
munol. 2002, 23, 291–296.
(12) Zaiou, M. Multifunctional antimicrobial peptides: therapeutic
targets in several human diseases. J. Mol. Med. 2007, 85, 317–329.
(13) Papagianni, M. Ribosomally synthesized peptides with antimi-
crobial properties: biosynthesis, structure, function, and applications.
Biotechnol. Adv. 2003, 21, 465–499.
(14) Bulet, P.; Stocklin, R.; Menin, L. Antimicrobial peptides: from
invertebrates to vertebrates. Immunol. Rev. 2004, 198, 169–184.
(15) Jenssen, H.; Hamill, P.; Hancock, R. E. Peptide antimicrobial
agents. Clin. Microbiol. Rev. 2006, 19, 491–511.
(16) Simmaco, M.; Mignogna, G.; Barra, D. Antimicrobial peptides
from amphibian skin: what do they tell us?. Biopolymers 1998, 47, 435–450.
(17) Rinaldi, A. C. Antimicrobial peptides from amphibian skin: an
expanding scenario. Curr. Opin. Chem. Biol. 2002, 6, 799–804.
(18) Simmaco, M.; Mignogna, G.; Canofeni, S.; Miele, R.; Mangoni,
M. L.; Barra, D. Temporins, antimicrobial peptides from the European
red frog Rana temporaria. Eur. J. Biochem. 1996, 242, 788–792.
(19) Mangoni, M. L.; Shai, Y. Temporins and their synergism against
Gram-negative bacteria and in lipopolysaccharide detoxification. Bio-
chim. Biophys. Acta 2009, 1788, 1610–1619.
(20) Mangoni, M. L.; Rinaldi, A. C.; Di Giulio, A.; Mignogna, G.;
Bozzi, A.; Barra, D.; Simmaco, M. Structure-function relationships of
temporins, small antimicrobial peptides from amphibian skin. Eur. J.
Biochem. 2000, 267, 1447–1454.
(21) Abbassi, F.; Lequin, O.; Piesse, C.; Goasdouꢁe, N.; Foulon, T.;
Nicolas, P.; Ladram, A. Temporin-SHf, a new type of Phe-rich and
hydrophobic ultrashort antimicrobial peptides. J. Biol. Chem. 2010, 285,
16880–16892.
(34) Eisenberg, D. Three-dimensional structure of membrane and
surface proteins. Annu. Rev. Biochem. 1984, 53, 595–623.
(35) Tossi, A.; Sandri, L.; Giangaspero, A. New consensus hydro-
phobicity scale extended to non-proteinogenic amino acids. In Peptides
2002, Edizioni Ziino, Naples, Italy, 2002; Benedetti, E., Pedone, C., Eds.;
2002; pp 416-417.
(36) Rietschel, E. T.; Kirikae, T.; Schade, F. U.; Mamat, U.; Schmidt,
G.; Loppnow, H.; Ulmer, A. J.; Zahringer, U.; Seydel, U.; Di Padova, F.;
Schreirer, M.; Brade, H. Bacterial endotoxin: molecular relationships of
structure to activity and function. FASEB J. 1994, 8, 217–225.
(37) Epand, R. M.; Epand, R. F.; Arnusch, C. J.; Papahadjopoulos-
Sternberg, B.; Wang, G.; Shai, Y. Lipid clustering by three homologous
arginine-rich antimicrobial peptides is insensitive to amino acid arrange-
ment and induced secondary structure. Biochim. Biophys. Acta 2010,
1798, 1272–1280.
(38) Mangoni, M. L.; Papo, N.; Saugar, J. M.; Barra, D.; Shai, Y.;
Simmaco, M.; Rivas, L. Effect of natural L- to D-amino acid conversion on
the organization, membrane binding, and biological function of the
antimicrobial peptides bombinins H. Biochemistry 2006, 45, 4266–4276.
(39) Breukink, E.; van Kraaij, C.; Demel, R. A.; Siezen, R. J.; Kuipers,
O. P.; de Kruijff, B. The C-terminal region of nisin is responsible for the
initial interaction of nisin with the target membrane. Biochemistry 1997,
36, 6968–6976.
(40) Dennison, S. R.; Wallace, J.; Harris, F.; Phoenix, D. A. Anphi-
philic alpha-helical antimicrobial peptides and their structure/function
relationships. Protein Pept. Lett. 2005, 12, 31–39.
(22) Wade, D.; Silberring, J.; Soliymani, R.; Heikkinen, S.;
Kilpel€ainen, I.; Lankinen, H.; Kuusela, P. Antibacterial activities of
temporin A analogs. FEBS Lett. 2000, 479, 6–9.
(23) Wade, D.; Silveira, A.; Silberring, J.; Kuusela, P.; Lankinen, H.
Antibiotic properties of novel synthetic temporin A analogs and a
(41) Giangaspero, A.; Sandri, L.; Tossi, A. Amphipathic alpha helical
antimicrobial peptides. Eur. J. Biochem. 2001, 268, 5589–5600.
(42) Lindberg, M.; Jarvet, J.; Langel, U.; Graslund, A. Secondary
structure and position of the cell-penetrating peptide transportan in SDS
micelles as determined by NMR. Biochemistry 2001, 40, 3141–3149.
1306
dx.doi.org/10.1021/jm1012853 |J. Med. Chem. 2011, 54, 1298–1307