1128
H. TOYAMA et al.
‘
‘Advances in Microbial Physiology’’ Vol. 36, eds. Rose,
15) Ameyama, M., Shinagawa, E., Matsushita, K., and
Adachi, O., D-Fructose dehydrogenase of Gluconobacter
suboxydans: purification, characterization, and applica-
tion to enzymatic microdetermination of D-fructose.
J. Bacteriol., 145, 814–823 (1981).
16) Dully, J. R., and Grieve, P. A., A simple technique for
eliminating interference by detergents in the Lowry
method of protein determination. Anal. Biochem., 64,
136–141 (1975).
17) Laemmli, U. K., Cleavage of structural proteins during
the assembly of the head of bacteriphage T4. Nature
(London), 227, 680–685 (1970).
18) Thomas, P. E., Ryan, D., and Levin, W., An improved
staining procedure for the detection of the peroxidase
activity of cytochrome P-450 on sodium dodecyl sulfate
polyacrylamide gels. Anal. Biochem., 75, 168–176
(1976).
19) Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular
cloning: a laboratory manual, 2nd edition, Cold Spring
Harbor Laboratory, Cold Spring Harbor, N.Y. (1989).
20) Marmur, J., A procedure for the isolation of deoxyribo-
nucleic acid from micro-organisms. J. Mol. Biol., 3,
208–218 (1961).
21) Scrutton, N. S., Identification of covalent flavoproteins
and analysis of the covalent link. Methods Mol. Biol.,
131, 181–193 (1999).
A. H., and Tempest, D. W., Academic Press, Ltd.,
London, pp. 247–301 (1994).
Adachi, O., Moonmungmee, D., Shinagawa, E., Toyama,
H., Yamada, M., and Matsushita, K., New quinoprotein
in oxidative fermentation. Biochim. Biophys. Acta, 1647,
3)
4)
5)
6)
1
0–17 (2003).
Adachi, O., Moonmangmee, D., Toyama, H., Yamada,
M., Shinagawa, E., and Matsushita, K., New develop-
ments in oxidative fermentation. Appl. Microbiol. Bio-
technol., 60, 643–653 (2003).
Sugisawa, T., and Hoshino, T., Purification and proper-
ties of membrane-bound D-sorbitol dehydrogenase from
Gluconobacter suboxydans IFO 3255. Biosci. Biotech-
nol. Biochem., 66, 57–64 (2002).
Shinagawa, E., Matsushita, K., Adachi, O., and
Ameyama, M., Purification and characterization of D-
sorbitol dehydrogenase from membrane of Gluconobact-
er suboxydans var. ꢀ. Agric. Biol. Chem., 46, 135–141
(
1982).
7
)
Miyazaki, T., Tomiyama, N., Shinjoh, M., and Hoshino,
T., Molecular cloning and functional expression of D-
sorbitol dehydrogenase from Gluconobacter suboxydans
IFO 3255, which requires pyrroloquinoline quinone and
hydrophobic protein SldB for acivity development in
E. coli. Biosci. Biotechnol. Biochem., 66, 262–270
(
2002).
22) Matsushita, K., Ebisuya, H., and Adachi, O., Homology
in the structure and the prosthetic groups between two
different terminal ubiquinol oxidases, cytochrome a1 and
cytochrome o, of Acetobacter aceti. J. Biol. Chem., 267,
24748–24753 (1992).
23) Rhee, S., Martin, R. G., Rosner, J. L., and Davies, D. R.,
A novel DNA-binding motive in MarA: the first
structure for an AraC family transcriptional activator.
Proc. Natl. Acad. Sci. U.S.A., 18, 10413–10418 (1998).
24) Goryshin, I. Y., and Rezninoff, W. S., Tn5 in vitro
transposition. J. Biol. Chem., 273, 7367–7374 (1998).
25) Berks, B. C., Sargent, F., and Palmer, T., The Tat protein
export pathway. Mol. Microbiol., 35, 260–274 (2000).
26) Pugsley, A. P., The complete general secretory pathway
in Gram-negative bacteria. Microbiol. Rev., 57, 50–108
(1993).
27) Adachi, O., Toyama, H., Theeragool, G., Lotong, N., and
Matsushita, K., Crystallization and properties of NAD-
dependent D-sorbitol dehydrogenase from Gluconobact-
er suboxydans IFO 3257. Biosci. Biotechnol. Biochem.,
63, 1589–1595 (1999).
28) Choi, E.-S., Lee, E.-H., and Rhee, S.-K., Purification of a
membrane-bound sorbitol dehydrogenase from Gluco-
nobacter suboxydans. FEMS Microbiol. Lett., 125, 45–
50 (1995).
29) Choi, J. H., and Lee, Y. S., Secretory and extracellular
production of recombinant proteins using Escherichia
coli. Appl. Microbiol. Biotechnol., 64, 625–635 (2004).
30) Kondo, K., Beppu, T., and Horinouchi, S., Cloning,
sequencing, and characterization of the gene encoding
the smallest subunit of the three components membrane-
bound alcohol dehydrogenase from Acetobacter pasteur-
ianus. J. Bacteriol., 177, 5048–5055 (1995).
31) Thurner, C., Vela, C., Thony-Meyer, L., Meile, L., and
Teuber, M., Biochemical and genetic characterization of
the acetaldehyde dehydrogenase complex from Aceto-
bacter europaeus. Arch. Microbiol., 168, 81–91 (1997).
8
)
)
Shinjoh, M., Tomiyama, N., Miyazaki, T., and Hoshino,
T., Main polyol dehydrogenase of Gluconobacter sub-
oxydans IFO 3255, membrane-bound D-sorbitol dehy-
drogenase, that needs product of upstream gene, sldB, for
activity. Biosci. Biotechnol. Biochem., 66, 2314–2322
(
2002).
9
Ameyama, M., Shinagawa, E., Matsushita, K., and
Adachi, O., Solubilization, purification and properties
of membrane-bound glycerol dehydrogenase from
Gluconobacter industrius. Agric. Biol. Chem., 49,
1
001–1010 (1985).
1
1
1
0) Adachi, O., Fujii, Y., Ghaly, M., Toyama, H.,
Shinagawa, E., and Matsushita, K., Membrane-bound
quinoprotein D-arabitol dehydrogenase of Gluconobacter
suboydans IFO 3257: a versatile enzyme for the
oxidative fermentation of various ketoses. Biosci. Bio-
technol. Biochem., 65, 2755–2762 (2001).
1) Matsushita, K., Fujii, Y., Ano, Y., Toyama, H., Shinjoh,
M., Tomiyama, N., Miyazaki, T., Sugisawa, T., Hoshino,
T., and Adachi, O., 5-Keto-D-guluconate production is
catalyzed by a quinoprotein glycerol dehydrogenase,
major polyol dehydrogenase, in Gluconobacter species.
Appl. Environ. Microbiol., 69, 1959–1966 (2003).
2) Shinagawa, E., Matsushita, K., Adachi, O., and
Ameyama, M., Purification and characterization of 2-
keto-D-gluconate dehydrogenase from Gluconobacter
melanogenus. Agric. Biol. Chem., 45, 1079–1085 (1981).
3) Bhosale, S. H., Rao, M. B., and Deshpade, V. V.,
Molecular and industrial aspects of glucose isomerase.
Microbiol. Rev., 60, 280–300 (1996).
1
1
4) Moonmangmee, D., Adachi, O., Ano, Y., Shinagawa, E.,
Toyama, H., Theeragool, G., Lotong, N., and
Matsushita, K., Isolation and characterization of ther-
motolerant Gluconobacter strains catalyzing oxidative
fermentation at higher temperatures. Biosci. Biotechnol.
Biochem., 65, 115–125 (2000).