T.-H. Chen et al. / Phytochemistry 70 (2009) 25–31
31
fication of the enzyme, the incubation time was 20 m. For determi-
nation of kinetic parameters, the reactions were performed for
various time periods to obtain initial velocities. The sucrose
concentrations used in kinetic analysis were 0, 20, 40, 60, 80,
Le Roy, K., Lammens, W., Verhaest, M., De Coninck, B., Rabijns, A., VanLaere, A., Van
den Ende, W., 2007. Unraveling the difference between invertases and fructan
exohydrolases:
a single amino acid (Asp-239) substitution transforms
Arabidopsis cell-wall invertase1 into a fructan 1-exohydrolase. Plant Physiol.
145, 616–625.
Matrai, J., Lammens, W., Jonckheer, A., Le Roy, K., Rabijns, A., Van den Ende, W., De
Maeyer, M., 2008. An alternate sucrose-binding mode in the E203Q Arabidopsis
invertase mutant: an X-ray crystallography and docking study. Proteins 71,
552–564.
Murayama, S., Handa, H., 2007. Genes for alkaline/neutral invertase in rice: alkaline/
neutral invertases are located in plant mitochondria and also in plastids. Planta
1
00, 150, 200 and 300 mM. One unit of activity was defined as
the amount of enzyme that catalyzed the formation of l mol of
l
reducing sugar from sucrose in 1 h at 37 °C. The kinetic constants
were determined from the Eadie-Hofstee plot using the program
Enzyme Kinetics!Pro (ChemSW Software, CA). The kcat values were
calculated on the basis of a molecular mass of 76,200 Da, as deter-
mined by gel filtration chromatography.
225, 1193–1203.
Nagem, R.A., Rojas, A.L., Golubev, A.M., Korneeva, O.S., Eneyskaya, E.V., Kulminskaya,
A.A., Neustroev, K.N., Polikarpov, I., 2004. Crystal structure of exo-inulinase
from Aspergillus awamori: the enzyme fold and structural determinants of
substrate recognition. J. Mol. Biol. 344, 471–480.
Acknowledgements
Nelson, N., 1944. A photometric adaptation of the Somogyi method for the
determination of glucose. J. Biol. Chem. 153, 375–380.
Ozimek, L.K., van Hijum, S.A., van Koningsveld, G.A., van Der Maarel, M.J., van Geel-
Schutten, G.H., Dijkhuizen, L., 2004. Site-directed mutagenesis study of the
three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121.
FEBS Lett. 560, 131–133.
This work was supported by grants from the National Science
Council, the Republic of China (Taiwan).
Reddy, A., Maley, F., 1996. Studies on identifying the catalytic role of Glu-204 in the
active-site of yeast invertase. J. Biol. Chem. 271, 13953–13957.
Reddy, V.A., Maley, F., 1990. Identification of an active-site residue in yeast
invertase by affinity labeling and site-directed mutagenesis. J. Biol. Chem. 265,
10817–10820.
References
Alberto, F., Bignon, C., Sulzenbacher, G., Henrissat, B., Czjzek, M., 2004. The three-
dimensional structure of invertase (beta-fructosidase) from Thermotoga
maritima reveals a bimodular arrangement and an evolutionary relationship
between retaining and inverting glycosidases. J. Biol. Chem. 279, 18903–
Ritsema, T., Smeekens, S.C., 2003. Engineering fructan metabolism in plants. J. Plant
Physiol. 160, 811–820.
1
8910.
Ritsema, T., Verhaar, A., Vijn, I., Smeekens, S., 2005. Using natural variation to
investigate the function of individual amino acids in the sucrose-binding box of
fructan: fructan 6G-fructosyltransferase (6G-FFT) in product formation. Plant
Mol. Biol. 58, 597–607.
Altenbach, D., Nuesch, E., Ritsema, T., Boller, T., Wiemken, A., 2005. Mutational
analysis of the active center of plant fructosyltransferases: festuca 1-SST and
barley 6-SFT. FEBS Lett. 579, 4647–4653.
Burmeister, W.P., Cottaz, S., Driguez, H., Iori, R., Palmieri, S., Henrissat, B., 1997. The
crystal structures of Sinapis alb a myrosinase and a covalent glycosyl-enzyme
intermediate provide insights into the substrate recognition and active-site
machinery of an S-glycosidase. Structure 5, 663–675.
Roitsch, T., Gonzalez, M.C., 2004. Function and regulation of plant invertases: sweet
sensations. Trend Plant Sci. 9, 606–613.
Sinnott, M.L., 1990. Catalytic mechanisms of enzymic glycosyl transfer. Chem. Rev.
90, 1171–1202.
Burmeister, W.P., Cottaz, S., Cottaz, S., Rollin, P., Vasella, A., Henrissat, B., 2000. High
Sturm, A., 1999. Invertases. Primary structures, functions, and roles in plant
development and sucrose partitioning. Plant Physiol. 121, 1–8.
Sturm, A., Tang, G.Q., 1999. The sucrose-cleaving enzymes of plants are crucial for
development, growth and carbon partitioning. Trend Plant Sci. 4, 401–407.
Tymowska-Lalanne, Z., Kreis, M., 1998. Expression of the Arabidopsis thaliana
invertase gene family. Planta 207, 259–265.
resolution X-ray crystallography shows that ascorbate is
a cofactor for
myrosinase and substitutes for the function of the catalytic base. J. Biol.
Chem. 275, 39385–39393.
Davies, G., Henrissat, B., 1995. Structures and mechanisms of glycosyl hydrolases.
Structure 3, 853–859.
Goetz, M., Roitsch, T., 2000. Identification of amino acids essential for enzymatic
activity of plant invertases. J. Plant Physiol. 157, 581–585.
Guex, N., Peitsch, M.C., 1997. SWISS-MODEL and the Swiss-Pdb viewer: an
environment for comparative protein modeling. Electrophoresis 18, 2714–
Verhaest, M., Ende, W.V., Roy, K.L., De Ranter, C.J., Laere, A.V., Rabijns, A., 2005. X-ray
diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-
exohydrolase IIa of Cichorium intybus. Plant J. 41, 400–411.
Verhaest, M., Lammens, W., Le Roy, K., De Coninck, B., De Ranter, C.J., Van Laere, A.,
Van den Ende, W., Rabijns, A., 2006. X-ray diffraction structure of a cell-wall
invertase from Arabidopsis thaliana. Acta Crystallogr. D: Biol. Crystallogr. 62,
1555–1563.
Vijn, I., Smeekens, S., 1999. Fructan: more than a reserve carbohydrate? Plant
Physiol. 120, 351–360.
White, A., Rose, D.R., 1997. Mechanism of catalysis by retaining b-glycosyl
hydrolases. Curr. Opin. Struct. Biol. 7, 645–651.
2
723.
Hsieh, C.W., Liu, L.K., Yeh, S.H., Chen, C.F., Lin, H.I., Sung, H.Y., Wang, A.Y., 2006.
Molecular cloning and functional identification of invertase isozymes from
green bamboo Bambusa oldhamii. J. Agric. Food Chem. 54, 3101–3107.
Koch, K., 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in
sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235–246.
Lammens, W., Le Roy, K., Van Laere, A., Rabijns, A., Van den Ende, W., 2008. Crystal
structures of Arabidopsis thaliana cell-wall invertase mutants in complex with
sucrose. J. Mol. Biol. 377, 378–385.
Zechel, D.L., Withers, S.G., 2001. Dissection of nucleophilic and acid-base catalysis in
glycosidases. Curr. Opin. Chem. Biol. 5, 643–649.