G. Barone et al. / Journal of Inorganic Biochemistry 104 (2010) 765–773
773
ZnL2+ photooxidation. The latter conclusion is in agreement with the
result that DNA-intercalated ZnL2+ is confined in a region less polar
than water and inaccessible to this solvent, possibly being water the
electron acceptor molecule of the ZnL2+ photooxidation.
[20] S.J. Wezenberg, E.C. Escudero-Adán, J. Benet-Buchholz, A.W. Kleij, Org. Lett. 10
(2008) 3311–3314.
[21] G. Barone, N. Gambino, A. Ruggirello, A. Silvestri, A. Terenzi, V. Turco Liveri, J.
Inorg. Biochem. 103 (2009) 731–737.
[22] A. Silvestri, G. Barone, G. Ruisi, D. Anselmo, S. Riela, V. Turco Liveri, J. Inorg.
Biochem. 101 (2007) 841–848.
Information achieved by steady state and time-resolved fluores-
cence spectroscopy indicates that the polarity of the environment
probed by ZnL2+, intercalated within DNA, is comprised between that
of methanol and ethanol and shows a continuous variation with the
DNA to complex molar ratio. Indirectly, this finding allows to
hypothesize that the structure of the DNA double helix progressively
changes by increasing the fraction of occupied binding sites. From a
more general prospect, the capability of DNA molecules to protect
intercalated species from photodegradation processes seems to be of
utmost importance from a biological point of view and could be
amenable to biomedical applications.
[23] G. Barone, A. Longo, A. Ruggirello, A. Silvestri, A. Terenzi, V. Turco Liveri, Dalton
Trans. (2008) 4172–4178.
[24] S.J. Angyal, P.J. Morris, J.R. Tetaz, J.G. Wilson, J. Chem. Soc. (1950) 2141–2145.
[25] P. McPhie, Methods Enzymol. 22 (1971) 23–32.
[26] S.D. Kennedy, R.G. Bryant, Biophys. J. 50 (1986) 669–676.
[27] W.-K. Dong, Y.-X. Sun, Y.-P. Zhang, L. Li, X.-N. He, X.-L. Tang, Inorg. Chim. Acta 362
(2009) 117–124.
[28] A.D. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
[29] N. Godbout, D.R. Salahub, J. Andzelm, E. Wimmer, Can. J. Chem. 70 (1992)
560–571.
[30] C. Sosa, J. Andzelm, B.C. Elkin, E. Wimmer, K.D. Dobbs, D.A. Dixon, J. Phys. Chem. 96
(1992) 6630–6636.
[31] E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52 (1984) 997–1000.
[32] R.E. Stratmann, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 109 (1998) 8218–8224.
[33] R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 256 (1996) 454–464.
[34] M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108 (1998)
4439–4449.
Acknowledgements
[35] J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. 96 (1992)
135–149.
[36] R.J. Cave, K. Burke, E.W. Castner Jr., J. Phys, Chem. A 106 (2002) 9294–9305.
[37] D. Jacquemin, E.A. Perpète, G. Scalmani, M.J. Frisch, I. Ciofini, C. Adamo, Chem.
Phys. Lett. 421 (2006) 272–276.
Financial support from the Università di Palermo, Cariplo, and MIUR
within the National Research Project “Dalle singole molecole a
complessi e nanostrutture: struttura, chiralità, reattività e teoria”
(PRIN 2006) is gratefully acknowledged. We thank also the “Fondazione
Banco di Sicilia” (Palermo, Italy) for the co-funding of the Fluoromax 4
(Jobin Yvon) spectrofluorometer (Convenzione PR 19.b/06).
[38] D. Jacquemin, E.A. Perpète, X. Assfeld, G. Scalmani, M.J. Frisch, C. Adamo, Chem.
Phys. Lett. 438 (2007) 208–212.
[39] V. Barone, M. Cossi, J. Phys, Chem. A 102 (1998) 1995–2001.
[40] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P.
Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O.
Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G.
Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara,
M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussian 03, Revision D.02, Gaussian, Inc., Wallingford CT, 2005.
[41] N.M. O'Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29 (2008) 839–845,
References
[1] A. Rajendran, C.J. Magesh, P.T. Perumal, Biochim. Biophys. Acta 1780 (2008)
282–288.
[2] A. Arola-Arnal, J. Benet-Buchholz, S. Neidle, R. Vilar, Inorg. Chem. 47 (2008) (1919)
11910–11911.
[3] B. Peng, W.-H. Zhou, L. Yan, H.-W. Liu, L. Zhu, Trans. Met. Chem. 34 (2009) 231–237.
[4] K. Takahashi, K. Fukiura, H. Arii, M. Chikira, Nucl. Acids Symp. Ser. 51(2007)189–190.
[5] G.-D. Liu, J.-P. Liao, S.-S. Huang, G.-L. Shen, R.-Q. Yu, Anal. Sci. 17 (2001) 1031–1036.
[6] G.-D. Liu, X. Yang, Z.-P. Chen, G.-L. Shen, R.-Q. Yu, Anal. Sci. 16 (2000) 1255–1259.
[7] D.J. Gravert, J.H. Griffin, Inorg. Chem. 35 (1996) 4837–4847.
[8] K.I. Ansari, J.D. Grant, G.A. Woldemariam, S. Kasiri, S.S. Mandal, Org. Biomol. Chem.
7 (2009) 926–932.
[9] G.A. Woldemariam, S.S. Mandal, J. Inorg. Biochem. 102 (2008) 740–747.
[10] S. Bhattacharya, S.S. Mandal, J. Chem. Soc. Chem. Comm. (1995) 2489–2490.
[11] J.G. Muller, L.A. Kayser, S.J. Paikoff, V. Duarte, N. Tang, R.J. Perez, S.E. Rokita, C.J.
Burrows, Coord. Chem. Rev. 185–186 (1999) 761–774.
[42] N.J. Turro, Modern Molecular Photochemistry, Benjamin-Cummings, Menlo Park,
CA, 1978.
[43] H. Kunkely, A. Vogler, J. Photochem, Photobiol. A. Chem. 138 (2001) 51–54.
[44] H. Kunkely, A. Vogler, Inorg. Chem. Commun. 4 (2001) 692–694.
[45] T. Fukuda, F. Sakamoto, M. Sato, Y. Nakano, X.S. Tana, Y. Fujii, Chem. Commun.
(1998) 1391–1392.
[12] S. Routier, J.-L. Bernier, M.J. Waring, P. Colson, C. Houssier, C. Bailly, J. Org. Chem.
61 (1996) 2326–2331.
[46] W. Saenger, Principles of Nucleic Acid Structure, Springer Verlag, New York, 1984.
[47] M. Raguz, J. Brnjas-Kraljevic, J. Chem. Inf. Model. 45 (2005) 1636–1640.
[48] C.D. Byrne, A.J. de Mello, Biophys. Chem. 70 (1998) 173–184.
[49] E.M. Talavera, P. Guerrero, F. Ocana, J.M. Alvarez-Pez, Appl. Spectrosc. 56 (2002)
80–87.
[50] R.A. Hochstrasser, D.P. Millar, Proceedings of SPIE, Int. Soc. Opt. Eng. 1640 (1992)
599–605.
[51] F. Ito, T. Kakiuchi, T. Nagamura, J. Phys, Chem. C. 111 (2007) 6983–6988.
[13] K. Sato, M. Chikira, Y. Fujii, A. Komatsu, J. Chem. Soc. Chem. Comm. (1994) 625–626.
[14] G.B. Roy, Inorg. Chim. Acta 362 (2009) 1709–1714.
[15] T. Kawasaki, T. Kamata, H. Ushijima, M. Kanakubo, S. Murata, F. Mizukami, Y. Fujii,
Y. Usui, J. Chem. Soc. Perkin Trans. 2 (1999) 193–198.
[16] H. Kunkely, A. Vogler, Inorg. Chim. Acta 321 (2001) 171–174.
[17] M.E. Germain, M.J. Knapp, Inorg. Chem. 47 (2008) 9748–9750.
[18] K.E. Splan, A.M. Massari, G.A. Morris, S.-S. Sun, E. Reina, S.B.T. Nguyen, J.T. Hupp,
Eur. J. Inorg. Chem. (2003) 2348–2351.
[19] M.E. Germain, T.R. Vargo, P.G. Khalifah, M.J. Knapp, Inorg. Chem. 46 (2007)
4422–4429.