Synthesis of Two Coumarins Isolated from Aster praealtus
4.13-4.02 (a lump, 1H, OH), 4.04 (dd, J=9.8, 2.5 Hz,
1H), 3.44 (s, 1H), 2.40 (ddd, J=18.3, 4.8, 2.4 Hz, 1H),
2.22 (d, J=17.2 Hz, 1H), 2.20 (s, 1H), 1.75 (s, 3H),
1.10 (s, 3H), 1.03 (s, 3H); 13C NMR (125 MHz, CDCl3)
δ: 158.7, 157.8, 131.0, 130.2, 120.7, 109.5, 104.8, 102.7,
72.2, 65.5, 48.7, 37.1, 31.9, 28.6, 23.1, 22.4; FT-IR
(film) vmax: 3378, 2961, 2924, 1597, 1483, 1466, 1287,
1174, 1149, 1075, 1010, 906, 769, 689 cm−1; EI-MS m/z
(%): 262 (M+, 3), 149 (16), 135 (18), 121 (15), 110
(100). EI-HRMS calcd for C16H22O3 (M+) 262.1569,
found 262.1571.
31.9 (CH), 27.3 (CH3), 22.4 (CH3), 20.9 (CH3); FT-IR
(film) vmax: 3473 (br), 2964, 2914, 1732, 1614, 1555,
1508, 1403, 1280, 1231, 1125, 835 cm−1; ESI-MS m/z:
315.2 ([M+H]+); ESI-HRMS calcd for C19H23O4 ([M
+H]+) 315.1596, found 315.1590.
Acylation of 4 to furnish 5
A solution of isopentanoyl chloride (470 μL, 0.038
mmol, of a stock solution prepared by dissolving 100
μL of isopentanoyl chloride in 10 mL of CH2Cl2) was
added to a solution of 4 (8 mg, 0.025 mmol) and DMAP
(12 mg, 0.10 mmol) in dry CH2Cl2 (0.5 mL) stirred in
an ice-water bath for 3 h (TLC showed completion of
the reaction). The mixture was diluted with EtOAc,
washed with water (5 mL) and brine (5 mL) before be-
ing dried over anhydrous Na2SO4. Removal of the sol-
vent by rotary evaporation and column chromatography
[V(PE)/V(EtOAc)=5∶1] on silica gel furnished 5 as a
white wax (6 mg, 0.017 mmol, 62%): [α]2D5 −53.0 (c
Coupling of 3 with 8 to afford 4
Alcohol 3 (34 mg, 0.20 mmol), 8 (54 mg, 0.24
mmol), Cs2CO3 (130 mg, 0.40 mmol), 1,10-phenan-
throline (8 mg, 0.04 mmol), CuI (8 mg, 0.04 mmol) and
a magnetic stirring bar were added to a thick wall/
heavy-duty reusable sealed tube equipped with a Teflon
screw cap. Dry m-xylene (2 mL) was then added. The
flask was flushed with argon and sealed with the screw
cap. The flask was placed in a 160 ℃ bath for 24 h
(with magnetic stirring). After being cooled to ambient
temperature, water was added (10 mL). The mixture
was extracted with EtOAc (80 mL×3). The combined
organic layers were washed with water (10 mL) and
brine (10 mL) before being dried over anhydrous
Na2SO4. Removal of the solvent by rotary evaporation
and column chromatography [V(PE)/V(EtOAc)=3∶1]
on silica gel furnished an approximately 5.9∶1 (as
shown by 1H NMR) inseparable mixture of 4 and 4' as a
colorless oil (8 mg, 0.025 mmol, 11%), along with re-
covered 3 (50%).
1
0.5, CHCl3); H NMR (500 MHz, CDCl3) δ: 7.64 (d,
J=9.1 Hz, 1H), 7.37 (d, J=8.8 Hz, 1H), 6.84 (dd, J=
8.8, 2.3 Hz, 1H), 6.81 (d, J=1.9 Hz, 1H), 6.25 (d, J=
9.6 Hz, 1H), 5.39 (br s, 1H), 4.76 (t, J=5.5 Hz, 1H),
4.37 (dd, J=9.8, 4.4 Hz, 1H), 4.08 (dd, J=9.8, 4.8 Hz,
1H), 2.42-2.34 (m, 1H), 2.28 (br s, 1H), 2.19 (br d,
J=6.7 Hz, 2H), 2.14-2.07 (m, 2H), 1.79 (s, 3H), 1.04
(s, 3H), 1.03 (s, 3H), 0.96 (d, J=6.0 Hz, 3H), 0.95 (d,
13
J=6.8 Hz, 3H); C NMR (125 MHz, CDCl3) δ: 172.6,
162.0, 161.2, 156.0, 143.4, 133.4, 128.7, 119.7, 113.10,
113.07, 112.5, 101.3, 75.5, 68.5, 48.9, 44.0, 35.8, 28.8,
26.1, 25.9, 22.7, 22.5, 22.4, 20.1; FT-IR (film) vmax
:
2962, 2929, 2866, 1735, 1613, 1406, 1292, 1230, 1121,
834 cm−1; EI-MS m/z (%): 398 (M+, 1.05), 296 (13),
176 (23), 162 (15), 135 (100), 121 (53), 119 (34), 107
(31), 93 (51), 85 (37); EI-HRMS calcd for C24H30O5 (M
+) 398.2093, found 398.2096.
Coupling of 3 with 9 to afford 4
The same procedure given above for the coupling of
3 with 8 was used. Yield (4/4'=5.9∶1): 20%, along
with 40% of recovered 3.
Acknowledgement
Removal of 4' in 4 by TEMPO oxidation
A solution of the mixture of 4 and 4' (18 mg, 0.05
mmol), BAIB (21 mg, 0.066 mmol) and TEMPO (5 mg,
0.028 mmol) in dry CH2Cl2 (1 mL) was stirred at ambi-
ent temperature for 3 h. The mixture was concentrated
on a rotary evaporator. The residue was purified by
column chromatography [V(PE)/V(EtOAc)=3∶1] on
silica gel to give pure 4 as a colorless oil (14 mg, 0.038
mmol, 77%). Data for 4 (after removal of 4' by TEMPO
This work was supported by the National Natural
Science Foundation of China (Nos. 21172247,
21372248) and the Chinese Academy of Sciences.
References and Notes
[1] Chen, H.-J.; Wu, Y.-K. Org. Lett. 2015, 17, 592.
[2] (a) Liu, D.-A.; Dong, Z.-J.; Wang, F.; Liu, J.-K. Tetrahedron Lett.
2010, 51, 3152; (b) Chokpaiboon, S.; Sommit, D.; Teerawatananond,
T.; Muangsin, N.; Bunyapaiboonsri, T.; Pudhom, K. J. Nat. Prod.
2010, 73, 1005; (c) Liu, D.-Z.; Luo, M.-H. Fitoterapia 2010, 81,
1205; (d) Li, H.; Huang, H.; Shao, C.; Huang, H.; Jiang, J.; Zhu, X.;
Liu, Y.; Liu, L.; Lu, Y.; Li, M.; Lin, Y.; She, Z. J. Nat. Prod. 2011, 74,
1230; (e) Chokpaiboon, S.; Sommit, D.; Bunyapaiboonsri, T.; Ma-
tsubara, K.; Pudhom, K. J. Nat. Prod. 2011, 74, 2290; (f) Wibowo,
M.; Prachyawarakorn, V.; Aree, T.; Wiyakrutta, S.; Mahidol, C.;
Ruchirawat, S.; Kittakoop, P. Eur. J. Org. Chem. 2014, 3976; For
use of merulin A for the treatment of African sleeping sickness, see:
(g) Navarro, G.; Chokpaiboon, S.; De Muylder, G.; Bray, W. M.; Ni-
sam, S. C.; McKerrow, J. H.; Pudhom, K.; Linington, R. G. PLoS
One 2012, 7, e46172; (h) Linington, R.; Navarro, G.; Pudhom, K.;
1
oxidation): [α]2D7 −75.5 (c 0.5, CHCl3); H NMR (400
MHz, CDCl3) δ: 7.64 (d, J=9.6 Hz, 1H), 7.37 (d, J=
8.7 Hz, 1H), 6.87-6.83 (m, 2H), 6.26 (d, J=9.4 Hz,
1H), 5.47 (br s, 1H), 4.34 (dd, J=9.8, 3.9 Hz, 1H), 4.12
(dd, J=9.9, 3.5 Hz, 1H), 3.48 (t, J=5.0 Hz, 1H), 2.76
-2.46 (br s, 1H), 2.39 (br d, J=18.4 Hz, 1H), 2.19-
2.10 (m, 2H), 1.76 (s, 3H), 1.06 (s, 6H); 13C NMR (100
MHz, CDCl3) δ: 161.4 (quat.), 161.1 (quat.), 155.8
(quat.), 143.3 (CH), 131.9 (quat.), 128.8 (CH), 120.7
(CH), 113.3 (CH), 113.1 (CH), 112.8 (quat.), 101.4
(CH), 73.0 (CH), 67.3 (CH2), 48.7 (CH), 37.1 (quat.),
Chin. J. Chem. 2015, 33, 723—728
© 2015 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
727