ChemComm
Communication
phase. The formation and reaction of benzyne in these complexes
were well proved by multi-stage mass spectrometry in combination
with theoretical calculations. This new method is promising to
synthesize more metal–benzyne complexes bearing various ligands
and then to study their gas-phase chemistry.
This study was supported by the National Science Founda-
tion of China (21025207 and 21372199).
+
Scheme 4 Gas-phase synthesis of the Cu –benzyne complex and its
reaction with N-(pyridin-2-ylmethylene)methanamine.
Notes and references
1
Three isomers are possible for benzyne: o-benzyne (1,2-didehydro-
benzene), m-benzyne (1,3-didehydrobenzene), and p-benzyne (1,4-
didehydrobenzene). When we discuss benzyne (also in this commu-
nication), it usually refers to o-benzyne.
compounds were then synthesized in solution and their complexes
with Cu (C3 and C4) can be readily produced via ESI. The multi-
+
stage fragmentation behavior of P2 is the same as that of C3 but
quite different from that of C4 (Fig. S14 and S15, ESI†). The major
product ion in the fragmentation of C3 and P2 is formed by losing
toluene (92 Da), which indicates an existing benzyl group in their
corresponding structures. These results indicate that the copper-
stabilized benzyne reacts with TMEDA via a selective C–H bond
insertion mechanism.
By applying the same approaches, the reaction of Cu –benzyne
with N-(pyridin-2-ylmethylene)methanamine was studied. The
benzyne was expected to react with this ligand through C–H
2
J. F. Bunnett, J. Chem. Educ., 1961, 38, 278–285.
3 W. Sander, Acc. Chem. Res., 1999, 32, 669–676.
4
5
6
T. Kitamura, Aust. J. Chem., 2010, 63, 987–1001.
C. Wentrup, Aust. J. Chem., 2010, 63, 979–986.
S. L. Buchwald and R. B. Nielsen, Chem. Rev., 1988, 88, 1047–1058.
7 M. Retbøll, A. J. Edwards, A. D. Rae, A. C. Willis, M. A. Bennett and
E. Wenger, J. Am. Chem. Soc., 2002, 124, 8348–8360.
8
9
G. Werner and H. Butensch ¨o n, Eur. J. Org. Chem., 2012, 3132–3141.
J. K. Cockcroft, V. C. Gibson, J. A. K. Howard, A. D. Poole and
U. Siemeling, J. Chem. Soc., Chem. Commun., 1992, 1668–1670.
+
1
1
1
1
0 M. A. Bennett, K. D. Griffiths, T. Okano, V. Parthasarathi and
G. B. Robertson, J. Am. Chem. Soc., 1990, 112, 7047–7048.
1 M. A. Bennett, T. Dirnberger, D. C. R. Hockless, E. Wenger and
A. C. Willis, J. Chem. Soc., Dalton Trans., 1998, 271–277.
2 A. A. Cant, L. Roberts and M. F. Greaney, Chem. Commun., 2010, 46,
(and not C–N) bond insertion to form product P3 (Scheme 4).
Theoretical calculations support this prediction. As shown in
Fig. 2, in the C–N bond insertion process, the methyl transfer
8671–8673.
3 J. Campora and S. L. Buchwald, Organometallics, 1993, 12, 4182–4187.
from N to benzyne requires a very high activation energy (MT-TS). In 14 A. M. Dyke, A. J. Hester and G. C. Lloyd-Jones, Synthesis, 2006,
4
093–4112.
contrast, the energy barriers of hydrogen transfer (HT-TS) and the
subsequent benzene transfer (BT-TS1) in the C–H bond insertion
1
5 E. W.-G. Diau, J. Casanova, J. D. Roberts and A. H. Zewail, Proc. Natl.
Acad. Sci. U. S. A., 2000, 97, 1376–1379.
process are much lower. The final product P3 is more stable than 16 F. S. Amegayibor, J. J. Nash, A. S. Lee, J. Thoen, C. J. Petzold and
ꢂ1
H. I. Kentt ¨a maa, J. Am. Chem. Soc., 2002, 124, 12066–12067.
7 P. G. Wenthold, J. Hu and R. R. Squires, J. Am. Chem. Soc., 1996, 118,
the starting complex D2 by 135.7 kJ mol , which supports the
1
formation of this product. In addition, the structure of P3 was
11865–11871.
further confirmed by multi-stage mass spectrometry (Fig. S16 18 L. M. Kirkpatrick, N. R. Vinueza, B. J. Jankiewicz, V. A. Gallardo,
E. F. Archibold, J. J. Nash and H. I. Kentt ¨a maa, Chem. – Eur. J., 2013,
and S17, ESI†).
19, 9022–9033.
This study offers a method to prepare gaseous ligand-ligated
1
9 T. G. Dietz, D. S. Chatellier and D. P. Ridge, J. Am. Chem. Soc., 1978,
100, 4905–4907.
0 Y. Huang and B. S. Freiser, J. Am. Chem. Soc., 1989, 111, 2387–2393.
1 Y. Huang and B. S. Freiser, J. Am. Chem. Soc., 1990, 112, 1682–1685.
2 H.-F. Lee, F.-W. Lin and C.-S. Yeh, J. Mass Spectrom., 2001, 36,
+
Cu –benzyne complexes using ESI mass spectrometry. 2-Iodobenzoic
acid was found to be an excellent benzyne precursor in the gas
2
2
2
4
93–499.
2
2
3 D. Wittneben, H.-F. Gr u¨ tzmacher, H. Butensch ¨o n and H. G. Wey,
Organometallics, 1992, 11, 3111–3116.
4 Y. Huang, Y. D. Hill, M. Sodupe, C. W. Bauschlicher Jr. and
B. S. Freiser, Inorg. Chem., 1991, 30, 3822–3829.
5 S. Gronert, Chem. Rev., 2001, 101, 329–360.
2
2
6 R. Kretschmer, M. Schlangen and H. Schwarz, Angew. Chem., Int.
Ed., 2011, 50, 5387–5391.
2
2
7 H. Schwarz, Angew. Chem., Int. Ed., 2011, 50, 10096–10115.
8 P. S. D. Robinson, G. N. Khairallah, G. de Silva, H. Lioe and
R. A. J. O’Hair, Angew. Chem., Int. Ed., 2012, 51, 3812–3817.
9 C. J. Shaffer, D. Schr o¨ der, C. G u¨ tz and A. L u¨ tzen, Angew. Chem., Int.
Ed., 2012, 51, 8097–8100.
2
3
3
3
3
3
0 R. R. Julian, J. A. May, B. M. Stoltz and J. L. Beauchamp, J. Am. Chem.
Soc., 2003, 125, 4478–4486.
1 W. A. Donald, C. J. McKenzie and R. A. J. O’Hair, Angew. Chem., Int.
Ed., 2011, 50, 8379–8383.
2 N. Rijs, G. N. Khairallah, T. Waters and R. A. J. O’Hair, J. Am. Chem.
Soc., 2008, 130, 1069–1079.
3 Z. Tian, B. Chan, M. B. Sullivan, L. Radom and S. R. Kass, Proc. Natl.
Acad. Sci. U. S. A., 2008, 105, 7647–7651.
4 M. M. Meyer, B. Chan, L. Radom and S. R. Kass, Angew. Chem., Int.
Ed., 2010, 49, 5161–5164.
+
Fig. 2 Energy profile calculated for the Cu -mediated reaction of ben-
zyne with N-(pyridin-2-ylmethylene)methanamine in the gas phase. The 35 M. M. Meyer, G. N. Khairallah, S. R. Kass and R. A. J. O’Hair, Angew.
ꢂ1
relative free energies are given in kJ mol
.
Chem., Int. Ed., 2009, 48, 2934–2936.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.