J. Am. Chem. Soc. 1997, 119, 6925-6926
6925
3
a
Multicomponent Linchpin Couplings of Silyl
Dithianes via Solvent-Controlled Brook
Rearrangement
In our syntheses of FK506, rapamycin and demethoxy-
3
b
3c
rapamycin, and discodermolide, treatment with t-BuLi in
9
1
0% HMPA/THF at -78 °C proved to be the optimum protocol
for rapid generation of 2-substituted dithiane anions. We
began the present study by using these conditions for bisalky-
10
Amos B. Smith, III* and Armen M. Boldi
11
lation of 2-tert-(butyldimethylsilyl)-1,3-dithiane (4), a substrate
also successfully employed by Tietze which leads to installation
of the more robust TBS hydroxyl protecting group. Metalation
of 4 in 10% HMPA/THF and immediate addition of epoxide
Department of Chemistry, Laboratory for Research on the
Structure of Matter, and Monell Chemical Senses Center
UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104
(
-)-5 readily afforded (+)-6 in good yield (Scheme 2).12
ReceiVed February 4, 1997
We and others have extensively employed dithiane cou-
Scheme 2
1
,2
plings with epoxides, R-alkoxy iodides and tosylates, and
aldehydes for the stereocontrolled generation of protected aldol
linkages and the union of advanced fragments in complex
molecule synthesis.3 Recent studies have also established the
,4
5
tactical advantages of domino reactions and two-direction chain
extension.6 Herein we report the one-flask linchpin coupling
of 2-(trialkylsilyl)-1,3-dithiane with two different electrophiles
In the presence of HMPA, both the initial alkylation of 4
and the subsequent Brook rearrangement occur within minutes
at -78 °C. Accordingly, the attempted sequential reaction of
4 with epoxides (-)-5 and (-)-7 led to a mixture of symmetrical
and unsymmetrical products [(+)-6, (+)-8a, and (+)-8b Scheme
3]. This result suggested that linchpin coupling of different
electrophiles would be feasible only if the Brook rearrangement
could be suppressed until the first alkylation was complete.
7
via solvent-controlled Brook rearrangement.
8
In 1994 Tietze and co-workers described the symmetrical
bisalkylation of trimethylsilyldithiane (1) with 2 equiv of a
scalemic epoxide [e.g., (+)-2, Scheme 1]. Following initial
reaction of the lithio derivative of 1 with the epoxide, the
7
resultant alkoxide undergoes 1,4-Brook rearrangement, trans-
ferring the silyl group to oxygen and generating the 2-alkyl
lithiated dithiane; coupling with a second molecule of the
epoxide then yields (-)-3. This process requires a reaction time
of 2 days and is inapplicable to unsymmetrical couplings (vide
infra).
Scheme 3
Scheme 1
Fortuitously, an elegant recent study by Oshima, Utimoto,
and co-workers revealed dramatic solvent effects on similar
Brook rearrangements in the adducts of lithio dihalo(trialkyl-
13
silyl)methanes with epoxides (Scheme 4). Rearrangement did
not occur following metalation and initial alkylation in THF
but proceeded readily upon addition of HMPA; the resultant
(
1) Corey, E. J.; Seebach, D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1075.
2) Reviews: (a) Seebach, D. Synthesis 1969, 17. (b) Seebach, D. Angew.
(
Chem., Int. Ed. Engl. 1969, 8, 639. (c) Gr o¨ bel, B.-T.; Seebach, D. Synthesis
1
977, 357. (d) Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239. (e)
Bulman Page, P. C.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45,
643.
3) (a) Smith, A. B., III; Chen, K.; Robinson, D. J.; Laakso, L. M.; Hale,
Scheme 4
7
(
K. J. Tetrahedron Lett. 1994, 35, 4271. (b) Smith, A. B., III; Condon, S.
M.; McCauley, J. A.; Leazer, J. L., Jr.; Leahy, J. W.; Maleczka, R. E., Jr.
J. Am. Chem. Soc. 1995, 117, 5407. (c) Smith, A. B., III; Qiu, Y.; Jones,
D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, 117, 12011.
(4) (a) Corey, E. J.; Weigel, L. O.; Chamberlin, A. R.; Cho, H.; Hua, D.
H. J. Am. Chem. Soc. 1980, 102, 6613. (b) Corey, E. J.; Pan, B.-C.; Hua,
D. H.; Deardorff, D. R. J. Am. Chem. Soc. 1982, 104, 6816. (c) Redlich,
H.; Francke, W. Angew. Chem., Int. Ed. Engl. 1980, 19, 630. (d) Barrett,
A. G. M.; Capps, N. K. Tetrahedron Lett. 1986, 27, 5571. (e) Park, P.;
Broka, C. A.; Johnson, B. F.; Kishi, Y. J. Am. Chem. Soc. 1987, 109, 6205.
(10) For an insightful discussion of the ion-pair solution structures of
2-lithio-1,3-dithianes in THF and HMPA/THF, see: Reich, H. J.; Borst, J.
P.; Dykstra, R. R. Tetrahedron 1994, 50, 5869.
(f) Egbertson, M.; Danishefsky, S. J. J. Org. Chem. 1989, 54, 11. (g) Mori,
Y.; Asai, M.; Furukawa, H. Heterocycles 1992, 34, 1281. (h) Nicolaou, K.
C.; Nadin, A.; Leresche, J. E.; Yue, E. W.; La Greca, S. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 2190.
(11) We prepared 4 in multigram quantities by addition of tert-
butyldimethylchlorosilane to the lithio derivative of 1,3-dithiane in THF at
-78 °C f room temperature over 2 h.
(
5) (a) Tietze, L. F. Chem. ReV. 1996, 96, 115. (b) Parsons, P. J.; Penkett,
C. S.; Shell, A. J. Chem. ReV. 1996, 96, 195. (c) Tietze, L. F.; Beifuss, U.
(12) All synthetic compounds were purified by flash chromatography
on silica gel. The structure assigned to each new compound is in accord
Angew. Chem., Int. Ed. Engl. 1993, 32, 131. (d) Posner, G. H. Chem. ReV.
1
13
1
986, 86, 831.
with its infrared, 500-MHz H NMR, and 125-MHz C NMR spectra as
well as appropriate parent ion identification by high resolution mass
spectrometry.
(6) (a) Schreiber, S. L. Chem. Scr. 1987, 27, 563. (b) Poss, C. S.;
Schreiber, S. L. Acc. Chem. Res. 1994, 27, 9. (c) Magnuson, S. R.
Tetrahedron 1995, 51, 2167.
(13) (a) Shinokubo, H.; Miura, K.; Oshima, K.; Utimoto, K. Tetrahedron
1996, 52, 503. (b) Shinokubo, H.; Miura, K.; Oshima, K.; Utimoto, K.
Tetrahedron Lett. 1993, 34, 1951.
(14) Matsuda, I.; Murata, S.; Ishii, Y. J. Chem. Soc., Perkin Trans. 1
1979, 26.
(15) Mukhopadhyay, T.; Seebach, D. HelV. Chim. Acta 1982, 65, 385.
(16) HMPA appears to be more effective than DMPU.
(17) In preliminary studies, 2-(trimethylsilyl)- and 2-(triethylsilyl)-1,3-
dithiane afforded lower yields of coupling products.
(18) Pettit, G. R.; Cichacz, Z. A.; Gao, F.; Herald, C. L.; Boyd, M. R.;
Schmidt, J. M.; Hooper, J. N. A. J. Org. Chem. 1993, 58, 1302.
(7) (a) Brook, A. G. Acc. Chem. Res. 1974, 7, 77. (b) Brook, A. G.;
Bassindale, A. R. In Rearrangements in Ground and Excited States; de
Mayo, P., Ed.; Academic Press: New York, 1980; Vol. 2, p 149. (c) Brook,
A. G.; Chrusciel, J. J. Organometallics 1984, 3, 1317. (d) Jankowski, P.;
Raubo, P.; Wicha, J. Synlett 1994, 985. (e) Lautens, M.; Delanghe, P. H.
M.; Goh, J. B.; Zhang, C. H. J. Org. Chem. 1995, 60, 4213.
(
8) Tietze, L. F.; Geissler, H.; Gewert, J. A.; Jakobi, U. Synlett 1994,
11.
9) These conditions were first employed by Williams: Williams, D.
R.; Sit, S.-Y. J. Am. Chem. Soc. 1984, 106, 2949.
5
(
S0002-7863(97)00371-5 CCC: $14.00 © 1997 American Chemical Society