Paper
PCCP
37 T. Maeda, S. Nitta, Y. Sano, S. Tanaka, S. Yagi and 60 This relation only allows a rough estimate of the coherence
H. Nakazumi, Dyes Pigm., 2015, 122, 160–167.
length. See: E. W. Knapp, Chem. Phys., 1984, 85, 73–82;
P. B. Walczak, A. Eisfeld and J. S. J. Briggs, Chem. Phys.,
2008, 128, 044505; G. D. Scholes and C. J. Smyth, Chem.
Phys., 2014, 140, 11901.
¨
38 U. Mayerhoffer, K. Deing, K. Gruss, H. Braunschweig,
K. Meerholz and F. Wu¨rthner, Angew. Chem., Int. Ed.,
2009, 48, 8776–8779.
¨
¨
39 U. Mayerhoffer, M. Gsanger, M. Stolte, B. Fimmel and 61 J. A. Leegwater, J. Phys. Chem., 1996, 100, 14403–14409.
F. Wu¨rthner, Chem. – Eur. J., 2013, 19, 218–232.
62 E. Rousseau, M. Van der Auweraer and F. C. De Schryver,
Langmuir, 2000, 16, 8865–8870.
¨
40 U. Mayerhoffer, B. Fimmel and F. Wu¨rthner, Angew. Chem.,
Int. Ed., 2012, 51, 164–167.
63 J. Knoester, Proc. Int. Sch. Phys. ‘‘Enrico Fermi’’, 2002, 149,
149–186.
64 Decay associated difference spectra refer to a kinetic model
in which all species decay in parallel. The amplitudes of the
multiexponential decay constitute the DADS.
65 I. Hwang and G. D. Scholes, Chem. Mater., 2011, 23, 610–620.
41 T. Maeda, S. Mineta, H. Fujiwara, H. Nakao, S. Yagi and
H. Nakazumi, J. Mater. Chem. A, 2013, 1, 1303–1309.
42 D. E. Lynch and K. A. Byriel, Cryst. Eng., 2000, 2, 225–239.
43 D. E. Lynch, Acta Crystallogr., Sect. E: Struct. Rep. Online,
2002, 58, o1025–o1027.
44 M. Matsui, M. Fukushima, Y. Kubota, K. Funabiki and 66 K. Hader, V. May, C. Lambert and V. Engel, Phys. Chem.
M. Shiro, Tetrahedron, 2012, 68, 1931–1935. Chem. Phys., 2016, 18, 13368–13374.
45 D. E. Lynch, A. N. Kirkham, J. Heptinstall and M. J. Cox, 67 Y. Zaushitsyn, K. G. Jespersen, L. Valkunas, V. Sundstrom
Dyes Pigm., 2013, 99, 160–167.
46 D. E. Lynch, M. J. Cox, P. M. King and G. Smith,
J. Photochem. Photobiol., A, 2016, 324, 87–95.
47 D. E. Lynch, M. Cox and P. M. King, J. Photochem. Photobiol., A,
2018, 360, 224–230.
48 D. E. Lynch, A. N. Kirkham, M. Z. H. Chowdhury, E. S. Wane
and J. Heptinstall, Dyes Pigm., 2012, 94, 393–402.
49 O. S. Kolosova, S. V. Shishkina, V. Marks, G. Gellerman,
and A. Yartsev, Phys. Rev. B: Condens. Matter Mater. Phys.,
2007, 75, 195201.
68 D. C. Dai and A. P. Monkman, Phys. Rev. B: Condens. Matter
Mater. Phys., 2013, 87, 045308.
69 M. A. Stevens, C. Silva, D. M. Russell and R. H. Friend, Phys.
Rev. B: Condens. Matter Mater. Phys., 2001, 63, 165213.
70 S. Cook, H. Liyuan, A. Furube and R. Katoh, J. Phys. Chem. C,
2010, 114, 10962–10968.
I. V. Hovor, A. L. Tatarets, E. A. Terpetschnig and L. D. 71 A. J. Lewis, A. Ruseckas, O. P. M. Gaudin, G. R. Webster,
Patsenker, Dyes Pigm., 2019, 163, 318–329.
50 G. Smith and D. E. Lynch, Acta Crystallogr., Sect. E: Struct.
Rep. Online, 2013, 69, o786–o787.
P. L. Burn and I. D. W. Samuel, Org. Electron., 2006, 7,
452–456.
72 D. Peckus, A. Devizis, D. Hertel, K. Meerholz and V. Gulbinas,
Chem. Phys., 2012, 404, 42–47.
51 A. Punzi, M. A. M. Capozzi, V. Fino, C. Carlucci, M. Suriano,
E. Mesto, E. Schingaro, E. Orgiu, S. Bonacchi, T. Leydecker, 73 S. Gelinas, J. Kirkpatrick, I. A. Howard, K. Johnson, M. W. B.
P. Samori, R. Musio and G. M. Farinola, J. Mater. Chem. C,
2016, 4, 3138–3142.
Wilson, G. Pace, R. H. Friend and C. Silva, J. Phys. Chem. B, 2013,
117, 4649–4653.
52 K. Ueji, S. Ichimura, Y. Tamaki and K. Miyamura, CrystEng- 74 Evolution associated difference spectra refer to a kinetic
Comm, 2014, 16, 10139–10147.
53 U. Lawrentz, W. Grahn, I. Dix and P. G. Jones, Acta Crystallogr.,
Sect. C: Cryst. Struct. Commun., 2001, C57, 126–128.
model in which all species evolve sequentially in time with
increasing time constants. The amplitudes of the multi-
exponential model constitute the EADS.
54 Y. Xu, M. J. Panzner, X. Li, W. J. Youngs and Y. Pang, Chem. 75 E. Hennebicq, G. Pourtois, G. D. Scholes, L. M. Herz, D. M.
Commun., 2010, 46, 4073–4075.
55 P. F. Santos, L. V. Reis, P. Almeida and D. E. Lynch,
CrystEngComm, 2011, 13, 1333–1338.
Russell, C. Silva, S. Setayesh, A. C. Grimsdale, K. Muellen,
J.-L. Bredas and D. Beljonne, J. Am. Chem. Soc., 2005, 127,
4744–4762.
56 C. Bru¨ning, E. Welz, A. Heilos, V. Stehr, C. Walter, B. Engels, 76 D. Beljonne, G. Pourtois, C. Silva, E. Hennebicq, L. M. Herz,
¨
S. F. Volker, C. Lambert and V. Engel, J. Phys. Chem. C, 2015,
R. H. Friend, G. D. Scholes, S. Setayesh, K. Mu¨llen and J. L.
119, 6174–6180.
Bredas, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 10982–10987.
´
57 J. Fabian and R. Zahradnık, Angew. Chem., Int. Ed. Engl., 77 K. Becker and J. M. Lupton, J. Am. Chem. Soc., 2006, 128,
1989, 28, 677–694. 6468–6479.
58 M. I. S. Rohr, H. Marciniak, J. Hoche, M. H. Schreck, 78 M. M. L. Grage, P. W. Wood, A. Ruseckas, T. Pullerits,
¨
H. Ceymann, R. Mitric and C. Lambert, J. Phys. Chem. C,
2018, 122, 8082–8093.
W. Mitchell, P. L. Burn, I. D. W. Samuel and V. Sundstrom,
J. Chem. Phys., 2003, 118, 7644–7650.
59 H. Marciniak, N. Auerhammer, S. Ricker, A. Schmiedel, 79 J. R. Miller, A. R. Cook, K. S. Schanze and P. Sreearunothai, in
M. Holzapfel and C. Lambert, J. Phys. Chem. C, 2019, 123,
Charge and Exciton Transport through Molecular Wires, ed. L. D. A.
3426–3432.
Siebbeles and F. C. Grozema, John Wiley & Sons, Inc., 2011.
Phys. Chem. Chem. Phys.
This journal is ©the Owner Societies 2019