A R T I C L E S
Krogh-Jespersen et al.
23-30 kcal/mol),11 shown in eq 2.
We report both theoretical and experimental approaches
toward the study of substituent effects for addition of small
molecules to complexes (Y-PCP)Ir and several other complexes
that contain the (Y-PCP)Ir unit.
[M] + H2 h [M](H)2
∆H1
(1)
We have synthesized the p-methoxy (Y ) OCH3) and
p-methoxycarbonyl [Y ) C(O)OCH3] substituted PCP ligands,
which represent electron-rich and electron-poor derivatives of
the parent ligand, respectively. The effect of these substituents
on the thermodynamics of H2 addition to (Y-PCP)Ir(CO) are
measured directly. We recently reported the products of arene
C-H addition to (PCP)Ir;22 equilibrium measurements reveal
the effects of derivatizing the arene undergoing C-H addition.
First-principles electronic structure calculations render the study
of a much wider range of para substituents feasible, and more
importantly, a fuller range of reactions may be examined. The
experimentally observed substituent effects are in excellent
agreement with the computed values; therefore, for the closely
related reactions where experimental values are not accessible,
we feel that we have excellent reason to be confident in the
accuracy of the calculated substituent effects.
alkane h H2 + alkene
∆H2 ≈ 23-30 kcal/mol (2)
[M] + alkane h [M](H)2 + alkene
∆H3 ) ∆H1 + ∆H2
(3)
On a more fundamental level, the PCP ligand affords an
excellent opportunity to vary ligand X in a fragment of the
general form trans-ML2X and to observe the resulting effect
on the thermodynamics of small-molecule additions. trans-
ML2X fragments (M ) Co, Rh, Ir; L typically a phosphine; X
typically an anionic group, especially halide) are found in a
wide range of important catalysts.1 Varying halides and related
ligands results in changes at the metal center that are substantial
and fairly complex; this has been particularly well established
with respect to energies of H2 addition.12-19 We have found
that the lighter, more electronegative halogens result (paradoxi-
cally) in increased electron density at the metal center of trans-
IrL2X(CO)20 and a decreased tendency toward oxidative addition
of H2;21 however, partly because bond lengths and other factors
are affected, elucidating the relative importance of steric,
electrostatic, and σ/π effects is a complex task. In the case of
the PCP ligand, the phenyl group is the equivalent of X in trans-
ML2X; systematic changes of the substituent at the position para
to the metal allow us to leave the ligand qualitatively unchanged
while varying electronic factors (exclusively) in an incremental
and controlled fashion.
Computational and Experimental Methods
Density Functional Calculations. Standard computational methods
based on density functional theory23 and implemented in the GAUSS-
IAN98 series of computer programs24 have been employed. Specifically,
we have made use of the three-parameter exchange functional of
Becke25 and the correlation functional of Lee, Yang, and Parr26
(B3LYP). The Hay-Wadt relativistic, small-core effective core po-
tential and corresponding basis set (split valence double-ú) were used
for the Ir atom (LANL2DZ model),27 and the second- and third-row
elements carried all-electron, full double-ú plus polarization function
basis sets (Dunning-Huzinaga D95(d)28 for Li, B, C, N, O, F;
McLean-Chandler29 for P). Hydrogen atoms in H2 or a hydrocarbon,
which formally become hydrides in the product complexes, were
described by the triple-ú plus polarization 311G(p) basis set;30 regular
hydrogen atoms present in the PCP ligand or in alkyl, aryl, boryl, and
amino groups carried a double-ú 21G basis set.31
(11) NIST Standard Reference Database Number 69, February 2000 release:
(20) The inverse halide order for electron richness has been reported in other
systems; see, for example, Zietlow, T. C.; Hopkins, M. D.; Gray, H. B. J.
Am. Chem. Soc. 1986, 108, 8266-8267.
(21) (a) Abu-Hasanayn, F.; Krogh-Jespersen, K.; Goldman, A. S. Inorg. Chem.
1993, 32, 495-496. (b) Abu-Hasanayn, F.; Goldman, A. S.; Krogh-
Jespersen, K. J. Phys. Chem. 1993, 97, 5890-5896. (c) Abu-Hasanayn,
F.; Krogh-Jespersen, K.; Goldman, A. S. Inorg. Chem. 1994, 33, 5122-
5130.
(22) Kanzelberger, M.; Singh, B.; Czerw, M.; Krogh-Jespersen, K.; Goldman,
A. S. J. Am. Chem. Soc. 2000, 122, 11017-11018.
(23) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules;
University Press: Oxford, U.K., 1989.
(24) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.
A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin,
K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Mailick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz,
J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;
Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 98 (Revision A.5); Gaussian
Inc.: Pittsburgh, PA, 1998.
(12) The M(PMe3)4X2 (M ) Mo, W) systems have been especially well studied
in this respect. Complexes of the lighter halides were found to react more
favorably with H2, providing an important contrast with H2 addition to
IrL2(CO)X, which is closely related to the (Y-PCP)Ir(CO) system examined
in the present work. More generally, however, conclusions drawn from
the Mo/W work are in good agreement with those of the present study
concerning the dominance of specific orbital interactions (filled-filled or
filled-empty), and in particular π donation from the ligand being varied,
in determining substituent effects. (a) Rabinovich, D.; Parkin, G. J. Am.
Chem. Soc. 1993, 115, 353-354. (b) Murphy, V. J.; Rabinovich, D.;
Hascall, T.; Klooster, W. T.; Koetzle, T. F.; Parkin, G. J. Am. Chem. Soc.
1998, 120, 4372-4387. (c) Hascall, T.; Rabinovich, D.; Murphy, V. J.;
Beachy, M. D.; Friesner, R. A.; Parkin, G. J. Am. Chem. Soc. 1999, 121,
11402-11417.
(13) (a) Rachidi, I. E.-I.; Eisenstein, O.; Jean, Y. New J. Chem. 1990, 14, 671-
677. (b) Riehl, J.-F.; Jean, Y.; Eisenstein, O.; Pe´lissier, M. Organometallics
1992, 11, 729.
(14) Clot, E.; Eisenstein, O. J. Phys. Chem. A 1998, 102, 3592-3598.
(15) (a) Lunder, D. M.; Lobkovsky, E. B.; Streib, W. E.; Caulton, K. G. J. Am.
Chem. Soc. 1991, 113, 1837-1838. (b) Poulton, J. T.; Folting, K.; Streib,
W. E.; Caulton, K. G. Inorg. Chem. 1992, 31, 3190-3191. (c) Caulton, K.
G. New J. Chem. 1994, 18, 25-41.
(16) Hauger, B. E.; Gusev, D.; Caulton, K. G. J. Am. Chem. Soc. 1994, 116,
208-214.
(17) Albinati, A.; Bakhmutov, V. I.; Caulton, K. G.; Clot, E.; Eckert, J.;
Eisenstein, O.; Gusev, D. G.; Grushin, V. V.; Hauger, B. E.; Klooster, W.
T.; Koetzle, T. F.; McMullan, R. K.; O’Loughlin, T. J.; Pe´lissier, M.; Ricci,
J. S.; Sigalas, M. P.; Vymenits, A. B. J. Am. Chem. Soc. 1993, 115, 7300-
7312.
(18) (a) Le-Husebo, T.; Jensen, C. M. Inorg. Chem. 1993, 32, 3797-3798. (b)
Lee, D. W.; Jensen, C. M. J. Am. Chem. Soc. 1996, 118, 8749-8750. (c)
Lee, D. W.; Jensen, C. M. Inorg. Chim. Acta 1997, 259, 359-362.
(19) Li, S. H.; Hall, M. B.; Eckert, J.; Jensen, C. M.; Albinati, A. J. Am. Chem.
Soc. 2000, 122, 2903-2910 and references therein.
(25) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(26) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785.
(27) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
(28) Dunning, T. H.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H.
F., Ed.; Plenum: New York, 1976; pp 1-28.
(29) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
(30) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980,
72, 650.
(31) Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102,
939.
9
10798 J. AM. CHEM. SOC. VOL. 124, NO. 36, 2002