Journal of the American Chemical Society
Page 4 of 5
Gauvin, R. M. ChemSusChem 2015, 8, 1143–1146; (b) Ho, T. T.;
multiplicity of the 13C{1H} NMR signal for PCH2 (C5: 17.5 ppm, d,
Jacobs, T.; Meier, M. A. R. ChemSusChem 2009, 2, 749–754.
(15) For selected noteworthy examples, see: Refs. 1a, 6e, and:
(a) Cash, B. M.; Prevost, N.; Wagner, F. F.; Comins, D. L. J. Org.
Chem. 2014, 79, 5740–5745; (b) Kinzurik, M. I.; Hristov, L. V.;
Matsuda, S. P. T.; Ball, Z. T. Org. Lett. 2014, 16, 2188–2191; (c)
Beemelmanns, C.; Gross, S.; Reissig, H.ꢀU. Chem. Eur. J. 2013, 19,
17801–17808; (d) Trost, B. M.; Aponick, A.; Stanzl, B. N. Chem.
Eur. J. 2007, 13, 9547–9560; (e) Marjanovic, J.; Kozmin, S. A.
Angew. Chem. Int. Ed. 2007, 46, 8854–8857. Additional examples
appear in a recent review of RCM methods for the synthesis of
lactones from acrylates. See: (f) Bassetti, M. D. A., Andrea Curr.
Org. Chem. 2013, 17, 2654–2677.
(16) Early suggestions centered on the limited capacity of the
electronꢀdeficient olefin to compete with PCy3 for binding to the
metal. See: (a) Love, J. A.; Morgan, J. P.; Trnka, T. M.; Grubbs, R. H.
Angew. Chem. Int. Ed. 2002, 41, 4035–4037. (b) Hoveyda, A. H.;
Gillingham, D. G.; Van Veldhuizen, J. J.; Kataoka, O.; Garber, S. B.;
Kingsbury, J. S.; Harrity, J. P. A. Org. Biomol. Chem. 2004, 2, 8–23.
Conversely, excessively strong binding of PCy3 to electronꢀdeficient
Ru intermediates has been proposed: see Ref. (b).
(17) Also potentially plausible is nucleophilic attack of PCy3 on
the electronꢀdeficient alkylidene, by analogy to the pathway
established for the methylidene complexes RuCl2(L)(PCy3)(=CH2).
Crystallographic evidence demonstrating attack of PCy3 on the
methylidene ligand was recently reported. See: (a) Lummiss, J. A. M.;
McClennan, W. L.; McDonald, R.; Fogg, D. E. Organometallics
2014, 33, 6738–6741. Abstraction of the methylidene moiety from
isolated GIIm liberates [MePCy3]Cl. See: (b) Hong, S. H.; Wenzel,
A. G.; Salguero, T. T.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc.
2007, 129, 7961–7968. For evidence of this pathway during catalysis,
see: (c) Lummiss, J. A. M.; Ireland, B. J.; Sommers, J. M.; Fogg, D.
E. ChemCatChem 2014, 6, 459–463. While nucleophilic attack of
phosphine on Ruꢀalkylidene species is rare, Diver has demonstrated
such a pathway where CO binding rendered the alkylidene carbon
more electrophilic. See: Galan, B. R.; Pitak, M.; Keister, J. B.; Diver,
S. T. Organometallics 2008, 27, 3630–3632.
1JPC = 44 Hz; see SI). This signal exhibits the expected HMQC
correlation to two diastereotopic methylene protons (δ 2.84, ddd, JHH
= 16 Hz, 2JPH = 12 Hz, JHH = 10 Hz, 1H; δ 2.35, m, 1H). The 13C{1H}
NMR doublet at 38.2 for the PCH2CH methine carbon also exhibits
the expected HMBC correlations with the adjacent methylene protons
(H5, H9, and H10); see SI.
1
2
3
4
5
6
7
8
(22) Fan, Y. C.; Kwon, O. Chem. Commun. 2013, 49, 11588–
11619.
(23) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346,
1035–1050.
(24) Gimbert, C.; Lumbierres, M.; Marchi, C.; MorenoꢀMañas,
M.; Sebastián, R. M.; Vallribera, A. Tetrahedron 2005, 61, 8598–
8605.
(25) GómezꢀBengoa, E.; Cuerva, J. M.; Mateo, C.; Echavarren,
A. M. J. Am. Chem. Soc. 1996, 118, 8553–8565.
(26) Morita, K.ꢀI.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc.
Japan 1968, 41, 2815–2815.
(27) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev.
2003, 103, 811–892.
(28) The Ru center may also act as a Lewis acid, complexing
the carbonyl group of A, and thus favouring subsequent Michael
addition reactions. Such behaviour was reported for a related Ruꢀ
hydride complex. See Ref. 25.
(29) Ireland, B. J.; Dobigny, B. T.; Fogg, D. E. ACS Catal.
2015, submitted.
(30) The phenol inhibitors present in methyl acrylate are not
significant contributors. The maximum level of 100 ppm 4ꢀ
methoxyphenol cited in the supplier’s specification sheet (Sigmaꢀ
Aldrich; 99% purity reagent) would account for just 0.5% yield of A+.
(31) Adding a phenol (the renewable phenol guaiacol) to the
reaction resulted in selective formation of [A]Cl: see SI.
(32) Forman, G. S.; Tooze, R. P. J. Organomet. Chem. 2005,
690, 5863–5866.
(33) Forman, G. S.; McConnell, A. E.; Tooze, R. P.; Van
Rensburg, W. J.; Meyer, W. H.; Kirk, M. M.; Dwyer, C. L.;
Serfontein, D. W. Organometallics 2005, 24, 4528–4542.
(34) Schmidt, B.; Hauke, S. Org. Biomol. Chem. 2013, 11,
4194–4206.
(35) Scavenging of phosphine offers an alternative solution. CuI
has recently been employed to enhance yields in GIIꢀpromoted
acrylate metathesis. See: (a) Nair, R. N.; Bannister, T. D. J. Org.
Chem. 2014, 79, 1467–1472; (b) Voigtritter, K.; Ghorai, S.; Lipshutz,
B. H. J. Org. Chem. 2011, 76, 4697–4702. As expected, adding CuI
during the anetholeꢀacrylate CM reaction completely suppressed
formation of the phosphonium salts. Instead visible in the 31P{1H}
NMR spectrum were a sharp singlet for [MePCy3]Cl (34.0 ppm) and a
broad singlet at 12.89 ppm, likely corresponding to a copperꢀ
phosphine adduct.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(18) (a) Vougioukalakis, G.C. RutheniumꢀBenzylidene Olefin
Metathesis Catalysts. In Olefin Metathesis-Theory and Practice,
Grela, K., Ed. Wiley: Hoboken, NJ, 2014; pp 397–416. (b) Ginzburg,
Y.; Lemcoff, N. G. HoveydaꢀType Olefin Metathesis Complexes. In
Olefin Metathesis-Theory and Practice, Grela, K., Ed. Wiley:
Hoboken, NJ, 2014; pp 437–451.
(19) Bates, J. M.; Lummiss, J. A. M.; Bailey, G. A.; Fogg, D. E.
ACS Catal. 2014, 4, 2387−2394.
(20) These experiments were carried out at 50 °C, to permit
interception of lowꢀenergy organometallic pathways, rather than
downstream events. At higher temperatures, attack of A on additional
CM products is observed; see text.
(21) The cation B+ was identified by mass spectrometric and
NMR analysis of material isolated by aqueous extraction. The cation
is unperturbed by isolation, as confirmed by spiking a reaction aliquot
with the isolated salt and assessing the 31P{1H} NMR spectrum.
Diagnostic for the structure of B+ is the upfield location and doublet
ACS Paragon Plus Environment