γ-Aminobutyric Acid Aminotransferase
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 20 4539
Ack n ow led gm en t. We thank the National Insti-
tutes of Health (Grant NS15703) for financial support
of this research.
(16) Murahashi, S.-I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. Pal-
ladium(0)-Catalyzed Azidation of Allyl Esters. Selective Syn-
thesis of Allyl Azides, Primary Allylamines, and Related Com-
pounds. J . Org. Chem. 1989, 54, 3292-3303.
(
(
(
17) Marshall, J . A.; Xie, S. Synthesis of a C22-34 Subunit of the
Refer en ces
Immunosuppressant FK-506. J . Org. Chem. 1995, 60, 7230-
7
237.
(
1) (a) Krnjevic, K. Chemical nature of synaptic transmission in
vertebrates. Physiol. Rev. 1974, 54, 418-540. (b) Faingold, C.
L.; Gehlbach, G.; Caspary, D. M. On the role of GABA as an
inhibitory neurotransmitter in inferior colliculus neurons: ion-
tophoretic studies. Brain Res. 1989, 500, 302-312. (c) Bohme,
I.; Luddens, H. The inhibitory neural circuitry as target of
antiepileptic drugs. Curr. Med. Chem. 2001, 8, 1257-1274.
2) Cooper, A. J . L. Glutamate-γ-aminobutyrate transaminase.
Methods Enzymol. 1985, 113, 80-82.
18) Nagarajan, S.; Ganem, B. Chemistry of Naturally Occurring
Polyamines. 11. Unsaturated Spermidine and Spermine Deriva-
tives. J . Org. Chem. 1987, 52, 5044-5046.
19) Overman, L. E.; Taylor, G. F.; Houk, K. N.; Domelsmith, L. N.
Diels-Alder Reactions between trans-1-N-Acylamino-1,3-dienes
and Methyl Acrylate. A Correlation between Diene Photoelectron
Ionization Potentials and Reactivity, Stereoselectivity, and
Regioselectivity. J . Am. Chem. Soc. 1978, 100, 3182-3189.
20) (a) J ung, M. E.; Lyster, M. A. Conversion of Alkyl Carbamates
into Amines via Treatment with Trimethylsilyl Iodide. J . Chem.
Soc. Chem. Commun. 1978, 315-316. (b) J ung, M. E.; Lyster,
M. A. Quantitative Dealkylation of Alkyl Esters via Treatment
with Trimethylsilyl Iodide. A New Method for Ester Hydrolysis.
J . Am. Chem. Soc. 1977, 99, 968-969.
(
(
(
(
3) Gale, K. GABA in epilepsy: the pharmacologic basis. Epilepsia
1
989, 30 (Suppl. 3), S1-S11.
4) (a) Hornykiewicz, O.; Lloyd, K. G.; Davidson, L. The GABA
system, function of the basal ganglia and Parkinson’s disease.
In GABA in Nervous System Function; Roberts, E., Chase, T.
N., Tower, D. B., Eds.; Raven Press: New York, 1976; pp 479-
4
85. (b) Kleppner, S. R.; Tobin, A. J . GABA signaling: Thera-
(21) Kitz, R.; Wilson, I. B. Esters of Methanesulfonic Acid as
Irreversible Inhibitors of Acetylcholinesterase. J . Biol. Chem.
1962, 237, 3245-3249.
peutic targets for epilepsy, Parkinson’s disease and Huntington’s
disease. Emerging Ther. Targets 2001, 5, 219-239.
(
5) Perry, T. L.; Hansen, S.; Kloster, M. Huntington’s chorea:
deficiency of γ-aminobutyric acid in brain. N. Engl. J . Med. 1973,
(
22) Storici, P.; Capitani, G.; De Biase, D.; Moser, M.; J ohn, R. A.;
J ansonius, J . N.; Schirmer, T. Crystal Structure of GABA-
aminotransferase, a Target for Antiepileptic Drug Therapy.
Biochemistry 1999, 38, 8628-8634.
23) (a) De Biase, D.; Barra, D.; Bossa, F.; Pucci, P.; J ohn, R. A.
Chemistry of the Inactivation of 4-Aminobutyrate Aminotrans-
ferase by the Antiepileptic Drug Vigabatrin. J . Biol. Chem. 1991,
2
88, 337-342.
(
6) (a) Aoyagi, T.; Wada, T.; Nagai, M.; Kojima, F.; Harada, S.;
Takeuchi, T.; Takahashi, H.; Hirokawa, K.; Tsumita, T. In-
creased γ-aminobutyrate aminotransferase activity in brain of
patients with Alzheimer’s disease. Chem. Pharm. Bull. 1990,
(
3
8, 1748-1749. (b) Weiner, M. F. Treatment of behavioral/
2
66, 20056-20061. (b) De Biase, D.; Bolton, J . B.; Barra, D.;
psychological symptoms in Alzheimer’s disease. Exp. Rev. Neu-
rother. 2001, 1, 70-80.
Bossa, F.; J ohn, R. A. Stoichiometry and stability of the adduct
formed between human 4-aminobutyrate aminotransferase and
(
7) (a) Kushner, S. A.; Dewey, S. L.; Kornetsky, C. The irreversible
γ-aminobutyric acid (GABA) transaminase inhibitor γ-vinyl-
GABA blocks cocaine self-administration in rats. J . Pharmacol.
Exp. Ther. 1999, 290, 797-802. (b) Dewey, S. L.; Morgan, A. E.;
Ashby, C. R., J r.; Horan, B.; Kushner, S. A.; Logan, J .; Volkow,
N. D.; Fowler, J . S.; Gardner, E. L.; Brodie, J . D. A novel strategy
for the treatment of cocaine addiction. Synapse 1998, 30, 119-
4
1
-aminohex-5-enoate: sequence of a labelled peptide. Biochimie
989, 71, 491-495.
(
24) Toney, M. D.; Pascarella, S.; De Biase, D. Active Site Model for
γ-Aminobutyrate Aminotransferase Explains Substrate Specific-
ity and Inhibitor Reactivities. Protein Sci. 1995, 4, 2366-2374.
(25) Dunathan, H. C. Conformation and Reaction Specificity in
Pyridoxal Phosphate Enzymes. Proc. Natl. Acad. Sci. U.S.A.
1966, 55, 712-716.
(26) Ross, J . H. 2,6-Dichloroquinone 4-Chloroimide as a Reagent for
Amines and Aromatic Hydrocarbons on Thin-layer Chromato-
grams. Anal. Chem. 1968, 40, 2138-2143.
(27) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible
Docking Method Using an Incremental Construction Algorithm.
J . Mol. Biol. 1996, 261, 470-489.
1
29.
(
8) Lippert, B.; Metcalf, B. W.; J ung, M. J .; Casara, P. 4-Amino-
hex-5-enoic Acid, a Selective Catalytic Inhibitor of 4-Aminobu-
tyric-Acid Aminotransferase in Mammalian Brain. Eur. J .
Biochem. 1977, 74, 441-445.
(
9) Nanavati, S. M.; Silverman, R. B. Design of Potential Anticon-
vulsant Agents: Mechanistic Classification of GABA Ami-
notransferase Inactivators. J . Med. Chem. 1989, 32, 2413-2421.
(
10) (a) Silverman, R. B. Mechanism-Based Enzyme Inactivation:
Chemistry and Enzymology; CRC Press: Boca Raton, 1988; Vols.
I and II. (b) Silverman, R. B. Mechanism-Based Enzyme Inac-
tivators. Methods Enzymol. 1995, 249, 240-283.
(
(
(
28) J ohnson, T. R.; Silverman, R. B. Syntheses of (Z)- and (E)-4-
Amino-2-(trifluoromethyl)-2-butenoic Acid and Their Inactiva-
tion of γ-Aminobutyric Acid Aminotransferase. Bioorg. Med.
Chem. 1999, 7, 1625-1636.
(
(
(
11) Davies, J . A. Mechanism of action of antiepileptic drugs. Seizure
29) Silverman, R. B.; Bichler, K. A.; Leon, A. J . Mechanisms of
inactivation of γ-aminobutyric acid aminotransferase by 4-amino-
1
995, 4, 267-271.
12) Brennan, M. Treating substance abuse. Chem. Eng. News 1999,
August 23, 8.
5
1
-fluoro-5-hexenoic acid. J . Am. Chem. Soc. 1996, 118, 1241-
252.
13) Nanavati, S. M.; Silverman, R. B. Mechanism of Inactivation of
γ-Aminobutyric Acid Aminotransferase by the Antiepilepsy Drug
γ-Vinyl GABA (Vigabatrin). J . Am. Chem. Soc. 1991, 113, 9341-
30) Penefsky, H. S. A centrifuged-column procedure for the mea-
surement of ligand binding by beef heart F1. Methods Enzymol.
1
979, 56, 527.
9
349.
(
14) Choi, S.; Storici, P.; Schirmer, T.; Silverman, R. B. Design of a
Conformationally Restricted Analogue of the Antiepilepsy Drug
Vigabatrin that Directs Its Mechanism of Inactivation of γ-Ami-
nobutyric Acid Aminotransferase. J . Am. Chem. Soc. 2002, 124,
(31) Fu, M.; Silverman, R. B. Isolation and characterization of the
product of inactivation of γ-aminobutyric acid aminotransferase
by gabaculine. Bioorg. Med. Chem. 1999, 7, 1581-1590.
(32) Dixon, M. The Determination of Enzyme Inhibitor Constants.
Biochem. J . 1953, 55, 170-171.
1
620-1624.
(
15) Qiu, J .; Pingsterhaus, J . M.; Silverman, R. B. Inhibition and
Substrate Activity of Conformationally Rigid Vigabatrin Ana-
logues with γ-Aminobutyric Acid Aminotransferase. J . Med.
Chem. 1999, 42, 4725-4728.
(33) Cornish-Bowden, A. Fundamentals of Enzyme Kinetics; Portland
Press: London, 1995; pp 102-108.
J M020134I