8
HOSEINI ET AL.
[17] M. L. Toebes, J. A. van Dillen, K. P. de Jong, J. Mol. Catal. A 2001, 173, 75.
used a ligandless catalyst in a safe solvent and environmen-
tally friendly medium of H2O–CTAB via a reduction of an
organometallic precursor, [PdCl2 (cod)], and also [Cu(acac)2]
and [Fe(acac)3] complexes. These recyclable heterogeneous
catalysts show suitable and efficient properties for the
Sonogashira carbon–carbon coupling reaction of a wide
range of aryl halides with phenylacetylene. The size of these
NPs is approximately 7–9 nm that affects the catalytic activ-
ity. Since PdCu/RGO and PdCuFe/RGO have similar size,
the higher efficiency of PdCuFe/RGO in the Sonogashira
coupling reaction is ascribed to the addition of Fe. The major
advantages of these catalysts are as follows:
[18] Z. Pahlevanneshan, M. Moghadam, V. Mirkhani, S. Tangestaninejad, I.
Mohammadpoor‐Baltork, A. R. Khosropour, Appl. Organomet. Chem.
2015, 29, 346.
[19] Z. L. Lu, E. Lindner, H. A. Mayer, Chem. Rev. 2002, 102, 3543.
[20] S. J. Hoseini, M. Dehghani, H. Nasrabadi, Catal. Sci. Technol. 2014, 4, 1078.
[21] S. J. Hoseini, A. Zarei, H. Rafatbakhsh Iran, Appl. Organomet. Chem. 2015,
29, 489.
[22] S. J. Hoseini, B. Habib Agahi, Z. Samadi Fard, R. Hashemi Fath, M.
[23] S. G. Booth, R. A. W. Dryfe, J. Phys. Chem. C 2015, 119, 23295.
[24] F. Bresme, M. Oettel, J. Phys. Condens. Matter 2007, 19, 1.
[25] R. A. W. Dryfe, Phys. Chem. Chem. Phys. 2006, 8, 1869.
[26] Y. Gründer, M. D. Fabian, S. G. Booth, D. Plana, D. J. Fermin, P. I. Hill,
R. A. W. Dryfe, Electrochim. Acta 2013, 110, 809.
1. High surface area due to both GO sheets and nanoalloy
thin films leads to an increase in the contact between
reactants and catalyst.
[27] M. P. Cecchini, V. A. Turek, J. Paget, A. A. Kornyshev, J. B. Edel, Nat.
Mater. 2013, 12, 165.
[28] J. J. Nieminen, I. Hatay, P. Y. Ge, M. A. Mendez, L. Murtomaki, H. H.
2. The reactions were performed in a green solvent, H2O,
giving high to excellent yields in short reaction time.
Girault, Chem. Commun. 2011, 47, 5548.
[29] A. N. J. Rodgers, S. G. Booth, R. A. W. Dryfe, Electrochem. Commun. 2014,
47, 17.
3. The catalytic activity of PdCuFe/RGO is greater than
that of PdCu/RGO (TOF = 593 750 and 68 839 h−1
,
[30] J. B. Edel, A. A. Kornyshev, M. Urbakh, ACS Nano 2013, 7, 9526.
[31] W. Tang, L. Zhang, G. Henkelman, J. Phys. Chem. Lett. 2011, 2, 1328.
respectively), and greater than that of some other
reported catalysts in the Sonogashira reaction of
phenylacetylene with iodobenzene.
[32] R. K. Singh, R. Rahul, M. Neergat, Phys. Chem. Chem. Phys. 2013, 15,
13044.
[33] a) F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J. P. Dodelet, G. Wu, H. T.
Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci. 2011, 4, 114; b) V.
R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J. Mayrhofer, C. A. Lucas, G.
Wang, P. N. Ross, N. M. Markovic, Nat. Mater. 2007, 6, 241.
It can be expected that these kinds of catalysts will
become of enhanced importance in future.
[34] M. E. Flatte, A. A. Kornyshev, M. Urbakh, J. Phys. Condens. Matter 2008,
20, 1.
ACKNOWLEDGMENTS
[35] V. A. Turek, M. P. Cecchini, J. Paget, A. R. Kucernak, A. A. Kornyshev,
The authors thank the Yasouj University Research Council
and the Iranian Nanotechnology Initiative Council for their
support.
J. B. Edel, ACS Nano 2012, 6, 7789.
[36] M. G. Nikolaides, A. R. Bausch, M. F. Hsu, A. D. Dinsmore, M. P. Brenner,
D. A. Weitz, C. Gay, Nature 2002, 420, 299.
[37] S. J. Hoseini, M. Rashidi, M. Bahrami, J. Mater. Chem. 2011, 21, 16170.
REFERENCES
[38] S. J. Hoseini, N. Mousavi, M. Roushani, L. Mosaddeghi, M. Bahrami, M.
[1] L. Yin, J. Liebscher, Chem. Rev. 2007, 107, 133.
Rashidi, Dalton Trans. 2013, 42, 12364.
[2] J. C. Barros, R. S. Yaunner, A. L. F. de Souza, J. F. M. da Silva, O. A. C.
[39] S. J. Hoseini, Z. Barzegar, M. Bahrami, M. Roushani, M. Rashidi,
Antunes, Appl. Organomet. Chem. 2011, 25, 820.
J. Organomet. Chem. 2014, 769, 1.
[40] S. J. Hoseini, M. Bahrami, M. Dehghani, RSC Adv. 2014, 4, 13796.
[41] S. J. Hoseini, M. Bahrami, M. Roushani, RSC Adv. 2014, 4, 46992.
[3] A. R. Hajipour, Z. Shirdashtzade, G. Azizi, Appl. Organomet. Chem. 2014,
28, 696.
[4] J. G. De Vries, Can. J. Chem. 2001, 79, 1086.
[42] S. J. Hoseini, M. Bahrami, M. Zanganeh, M. Roushani, M. Rashidi, RSC
Adv. 2016, 6, 45753.
[5] C. E. Tucker, J. G. De Vries, Top. Catal. 2002, 19, 111.
[43] M. A. De‐la‐Rosa, E. Velarde, A. Guzman, Synth. Commun. 1990, 20, 2059.
[6] C. J. Welch, J. Albaneze‐Walker, W. R. Leonard, M. Biba, J. DaSilva, D.
Henderson, B. Liang, D. J. Mathre, S. Spencer, X. Bu, T. Wang, Org. Pro-
cess Res. Dev. 2005, 9, 198.
[44] B. M. Choudary, S. Madhi, N. S. Chowdari, M. L. Kantam, B. Sreedhar,
J. Am. Chem. Soc. 2002, 124, 14127.
[7] M. Seki, Synthesis 2006, 18, 2975.
[45] H. S. Booth, L. F. Audrieth, J. C. Bailar, Inorganic Synthesis, McGraw‐Hill,
New York 1939.
[9] A. Biffis, M. Zecca, M. Basato, Eur. J. Inorg. Chem. 2001, 5, 1131.
[46] M. K. Chaudhuri, S. K. Ghosh, J. Chem. Soc. Dalton Trans. 1983, 839.
[47] A. Rittermeier, S. Miao, M. K. Schröter, X. Zhang, M. W. E. van den Berg,
S. Kundu, Y. Wang, S. Schimpf, E. Löffler, R. A. Fischer, M. Muhler, Phys.
Chem. Chem. Phys. 2009, 11, 8358.
[10] H. Keypour, S. Ghahri Saremi, M. Noroozi, H. Veisi, Appl. Organomet.
[11] K. Kohler, M. Wagner, L. Djakovitch, Catal. Today 2001, 66, 105.
[12] A. Biffis, M. Zecca, M. Basato, J. Mol. Catal. A 2001, 173, 249.
[13] R. S. Varma, K. P. Naicker, P. J. Liesen, Tetrahedron Lett. 1999, 40, 2075.
[14] B. M. Bhanage, M. Arai, Catal. Rev. 2001, 43, 315.
[48] W. He, H. Jiang, Y. Zhou, S. Yang, X. Xue, Z. Zou, X. Zhang, D. L. Akins,
H. Yang, Carbon 2012, 50, 265.
[49] Z. Novak, A. Szabo, J. Repasi, A. Kotschy, J. Org. Chem. 2003, 68, 3327.
[50] R. G. Heidenreich, K. Kohler, J. G. E. Krauter, J. Pietsch, Synlett 2002, 7,
1118.
[15] X. Zhu, H. Cho, M. Pasupong, J. R. Regalbuto, ACS Catal. 2013, 3, 625.
[51] M. Gholinejad, J. Ahmadi, ChemPlusChem 2015, 80, 973.
[16] B. Tapin, F. Epron, C. Especel, B. Khanh Ly, C. Pinel, M. Besson, ACS
Catal. 2013, 3, 2327.
[52] D. Sengupta, J. Saha, G. De, B. Basu, J. Mater. Chem. A 2014, 2, 3986.