a
Table 2 Some geometric and electronic parameters of the optimised adducts
NBO charges in the cyano group
H-bond length
between the cyano
and amino
Formation
enthalpy/
kJ mol
C–N distance
in the cyano
˚
bond/A
N–C–C angle of
the cyano
function/1
Dipole
moment/
debye
Adduct of
melem with
ꢀ
1
˚
group/A
N
C
Acetonitrile
Propionitrile
Pyrazinecarbonitrile
Benzonitrile
a
ꢀ38.9
1.164
2.063
2.060
2.139
2.013
176.9
(180.0)
177.0
(179.3)
176.8
(178.4)
178.1
(180.0)
ꢀ0.42
0.37
(0.29)
0.37
(0.25)
0.33
(0.27)
0.35
(0.28)
4.39
(3.48)
4.38
(3.48)
4.03
(2.98)
4.10
(3.26)
b
(
1.165)
1.165
1.165)
1.165
1.166)
1.167
1.168)
(ꢀ0.33)
ꢀ0.42
ꢀ38.1
ꢀ49.9
ꢀ37.8
(
(ꢀ0.33)
ꢀ0.39
(
(ꢀ0.26)
ꢀ0.38
(
(ꢀ0.30)
28
All computations were performed using the Gaussian 03 suite of programs and gradient-corrected density functional theory by using the
29
B3LYP functional. Optimisations were carried out using the 6-311G basis set. Evaluation of the charge repartition was achieved using the natural
For comparison, the corresponding lengths, angles and charges in the non-complexed nitriles are
32 b
bond orbital (NBO) population analysis.
given in brackets.
different carbonitrides a very promising class of functional
solid-state structures, particularly to explore the possibilities
of a metal-free coordination chemistry and a coupled ‘‘green’’
group-efficient heterogeneous catalysis.
20 B. List, Acc. Chem. Res., 2004, 37, 548.
2
2
2
2
2
1 F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angew.
Chem., Int. Ed., 2006, 45, 4467.
2 F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Chem.
Commun., 2006, 4530.
3 F. Goettmann, A. Thomas and M. Antonietti, Angew. Chem., Int.
Ed., 2007, 46, 2717.
4 E. Kroke, M. Schwarz, E. Horath-Bordon, P. Kroll, B. Noll and
A. D. Norman, New J. Chem., 2002, 26, 508.
5 J. C. Santos, V. Polo and J. Andres, Chem. Phys. Lett., 2005, 406, 393.
Acknowledgements
Financial support from the Max-Planck-Society within the
framework of the project house ENERCHEM is gratefully
acknowledged.
26 R. W. A. Havenith, P. W. Fowler, L. W. Jenneskens and E.
Steiner, J. Phys. Chem. A, 2003, 107, 1867.
2
7 Y. L. Wang, A. M. Mebel, C. J. Wu, Y. T. Chen, C. E. Lin and J.
C. Jiang, J. Chem. Soc., Faraday Trans., 1997, 93, 3445.
References
28 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V.G. Zakrzewski, J. A. Montgomery, Jr.,
R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D.
Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo,
S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K.
Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D.
Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M.
Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W.
Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S.
Replogle and J. A. Pople, GAUSSIAN 98 (Revision A.11), Gaus-
sian, Inc., Pittsburgh, PA, 2001.
1
2
3
4
5
6
7
A. Ioffe and S. Shaik, J. Chem. Soc., Perkin Trans. 2, 1992, 2101.
S. Saito and Y. Yamamoto, Chem. Rev., 2000, 100, 2901.
P. Gamez and J. Reedijk, Eur. J. Inorg. Chem., 2006, 29.
A. M. Gupta and C. W. Macosko, Macromolecules, 1993, 26, 2455.
T. Murase and M. Fujita, J. Org. Chem., 2005, 70, 9269.
K. Ikehata and M. G. El-Din, Ozone: Sci. Eng., 2005, 27, 173.
P. T. Anastas and M. M. Kirchhoff, Acc. Chem. Res., 2002, 35,
6
86.
J. F. Jenck, F. Agterberg and M. J. Droescher, Green Chem., 2004,
, 544.
D. J. Cole-Hamilton and R. P. Tooze, Catalyst Separation, Re-
covery and Recycling, Springer, Berlin, 2006.
8
9
6
10 X. C. Tao, T. P. Liu, H. Tao, R. Z. Liu and Y. L. Qian, J. Mol.
Catal. A: Chem., 2003, 201, 155.
29 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
1
1 A. Diaz-Ortiz, A. de la Hoz, A. Moreno, A. Sanchez-Migallon and
G. Valiente, Green Chem., 2002, 4, 339.
´
2 J. J. Becker and M. R. Gagne, Acc. Chem. Res., 2004, 37, 798.
3 A. Corma, Catal. Rev. Sci. Eng., 2004, 46, 369.
4 D. T. On, D. Desplantier-Giscard, C. Danumah and S. Kaliaguine,
Appl. Catal., A, 2001, 222, 299.
30 SDBSWeb: National Institute of Advanced Industrial Science and
Technology, 2006.07.17, http://www.aist.go.jp/RIODB/SDBS/.
31 A. R. Katritzky, F. J. Luxem and M. Siskin, Energy Fuels, 1990, 4,
514.
32 E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold,
NBO Version 3.1, Theoretical Chemistry Institute, University of
Wisconsin, Madison.
1
1
1
1
5 A. Taguchi and F. Schuth, Microporous Mesoporous Mater., 2005,
77, 1.
33 E. Fischer, Ber. Dtsch. Chem. Ges., 1890, 23, 2611.
1
1
1
6 A. P. Wight and M. E. Davis, Chem. Rev., 2002, 102, 3589.
7 F. Goettmann and C. Sanchez, J. Mater. Chem., 2007, 17, 24.
8 D. S. Su, N. Maksimova, J. J. Delgado, N. Keller, G. Mestl, M. J.
Ledoux and R. Schlogl, Catal. Today, 2005, 102, 110.
34 D. E. Koshland, Angew. Chem., Int. Ed. Engl., 1994, 33, 2375.
35 J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995.
36 A. Pinner and F. Klein, Ber. Dtsch. Chem. Ges., 1878, 11, 764.
37 A. H. Cook and D. G. Jones, J. Chem. Soc., 1941, 278.
38 B. V. Lotsch and W. Schnick, Chem. Mater., 2006, 18, 1891.
1
9 P. I. Dalko and L. Moisan, Angew. Chem., Int. Ed., 2004, 43, 5138.
1
460 | New J. Chem., 2007, 31, 1455–1460
This journal is ꢁc the Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2007