Chemistry - A European Journal
10.1002/chem.201905827
COMMUNICATION
specific stereochemical course for the C1 hydrogens was
observed by product analysis through HSQC spectroscopy,
Keywords: terpenoids • substrate analogs • enzyme catalysis •
isotopes • configuration determination
revealing that the 1-pro-R hydrogen ends up in the H1
Z
and the 1-
pro-S hydrogen in the H1 position (Figure S106), which supports
E
[
1]
J. S. Dickschat, Angew. Chem. Int. Ed. 2019, 58, 15964.
J. S. Dickschat, Nat. Prod. Rep. 2016, 33, 87.
its enzymatic formation and reflects the situation in the
intermediate (R)-NPP towards 16 (Scheme 4A). For the
biosynthesis of 22 another 1,2-hydride shift from C6 to C7 of 10b
was assumed. Direct evidence for this step was obtained by
[2]
[3]
M. B. Quin, C. M. Flynn, C. Schmidt-Dannert, Nat. Prod. Rep. 2014, 31,
1449.
[
4]
A. Minami, T. Ozaki, C. Liu, H. Oiawa, Nat. Prod. Rep. 2018, 35, 1330.
T. Mitsuhashi, I. Abe, ChemBioChem 2018, 19, 1106.
1
3
2
[5]
incubation of (3- C,2- H)GPP and 8b with FPPS and TmS,
resulting in an upfield shifted triplet for C10 of 22 as a result of
[
[
[
6]
7]
8]
D. W. Christianson, Chem. Rev. 2017, 117, 11570.
R. J. Peters, Nat. Prod. Rep. 2010, 27, 1521.
1
3
2
C- H spin coupling (Figure S107). The terminal deprotonation to
a) J. S. Dickschat, T. Nawrath, V. Thiel, B. Kunze, R. Müller, S. Schulz,
Angew. Chem. Int. Ed. 2007, 46, 8287; b) M. Komatsu, M. Tsuda, S.
Omura, H. Oikawa, H. Ikeda, Proc. Natl. Acad. Sci. USA 2008, 105,
7422; c) C.-M. Wang, D. E. Cane, J. Am. Chem. Soc. 2008, 130, 8908.
a) S. H. von Reuß, M. Kai, B. Piechulla, W. Francke, Angew. Chem. Int.
Ed. 2010, 49, 2009; b) S. von Reuß, D. Domick, M. C. Lemfack, N.
Magnus, M. Kai, T. Weise, B. Piechulla, J. Am. Chem. Soc. 2018, 140,
2
[20]
this compound was followed by incubation of (2- H)DMAPP,
IPP and 8b with FPPS and TmS. The main product of this reaction
2
was (7- H)-16, but unlabelled 22 was also detected (Figure S108).
[
[
9]
It is well known that the elongation of oligoprenyl diphosphates
with IPP proceeds with inversion of configuration at C1 of the allyl
diphosphate[21] and Si face attack at C4 of IPP.[15] As discussed
11855.
above, the face selectivity regarding the IPP analogs 8a and 8b
10] T. Ozaki, S. S. Shinde, L. Gao, R. Okuizumi, C. Liu, Y. Ogasawara, X.
is the same. To investigate whether also configuration inversion
Lei, T. Dairi, A. Minami, H. Oikawa, Angew. Chem. Int. Ed. 2018, 57,
13
at C1 of the allyl diphosphate occurs, (R)- and (S)-(1- C,1-
2H)GPP[22] and 8a or 8b were incubated with FPPS and TmS.
HSQC analysis of the obtained products revealed selective
6629.
[11] D. A. Schooley, K. J. Judy, B. J. Bergot, M. S. Hall, J. B. Siddall, Proc.
Natl. Acad. Sci. USA 1973, 70, 2921.
[
12] a) D. J. Miller, F. Yu, R. K. Allemann, ChemBioChem 2007, 8, 1819; b)
J. A. Faraldos, Y. Zhao, P. E. O'Maille, J. P. Noel, R. M. Coates,
ChemBioChem 2007, 8, 1826; c) O. Cascón, S. Touchet, D. J. Miller, V.
Gonzalez, J. A. Faraldos, R. K. Allemann, Chem. Commun. 2012, 48,
deuterium incorporation into H2
of 18, 20 and 22 from (R)- and
13
2
into H2
from (S)-(1- C,1- H)GPP (Figures S109 – S111), in
agreement with configurational inversion. Based on these findings,
an NMR data assignment for the diastereotopic C5 hydrogens of
9702; d) S. Touchet, K. Chamberlain, C. M. Woodcock, D. J. Miller, M. A.
17 was possible (Figure S112). Also the NMR shifts of the C2
Birkett, J. A. Pickett, R. K. Allemann, Chem. Commun. 2015, 51, 7550;
e) M. Demiray, X. Tang, T. Wirth, J. A. Faraldos, R. K. Allemann, Angew.
Chem. Int. Ed. 2017, 56, 4347; f) C. Oberhauser, V. Harms, K. Seidel, B.
Schröder, K. Ekramzadeh, S. Beutel, S. Winkler, L. Lauterbach, J. S.
Dickschat, A. Kirschning, Angew. Chem. Int. Ed. 2018, 57, 11802.
13] P. Rabe, J. Rinkel, B. Nubbemeyer, T. G. Köllner, F. Chen, J. S.
Dickschat, Angew. Chem. Int. Ed. 2016, 55, 15420.
hydrogens of 19 could be assigned (Figure S113), which allowed
for its unambiguous configuration determination, that was without
this information obscured by the identical chemical shifts of H1
and H2
1 with almost identical chemical shifts were distinguished (Figure
S114, 1.75 ppm for H2 and 1.72 ppm for H2 ).
. Through this labelling strategy also the C2 hydrogens of
[
2
[
14] T. Koyama, K. Ogura, S. Seto, J. Am. Chem. Soc. 1977, 99, 1999.
15] J. W. Cornforth, R. H. Cornforth, G. Popjak, L. Yengoyan, J. Biol. Chem.
In summary, we have demonstrated that methylated IPP analogs
can be enzymatically incorporated into methylated terpenes,
giving access to a chemical space that is naturally realised only
in a few known cases. The incorporation sites of the extra Me
groups set a stereochemical anchor in the products that allows to
assign their absolute configurations. In conjunction with labelling
experiments complex and interesting stereochemical problems
and enzyme mechanistic aspects can be solved. We will extend
this work in the future using further IPP analogs and TSs for the
enzymatic synthesis of methylated terpenes.
[
1966, 241, 3970.
[
16] a) P. Rabe, J. S. Dickschat, Angew. Chem. Int. Ed. 2013, 52, 1810; b) P.
Rabe, T. Schmitz, J. S. Dickschat, Beilstein J. Org. Chem. 2016, 12,
1839.
[
[
17] M. Winter, H. Schinz, M. Stoll, Helv. Chim. Acta. 1947, 30, 2213.
18] J. Rinkel, P. Rabe, P. Garbeva, J. S. Dickschat, Angew. Chem. Int. Ed.
2016, 55, 13593.
[
[
[
[
19] T. Mitsuhashi, J. Rinkel, M. Okada, I. Abe, J. S. Dickschat, Chem. Eur.
J. 2017, 23, 10053.
20] J. Rinkel, P. Rabe, X. Chen, T. G. Köllner, F. Chen, J. S. Dickschat,
Chem. Eur. J. 2017, 23, 10501.
21] J. W. Cornforth, R. H. Cornforth, C. Donninger, G. Popjak, Proc. R. Soc.
London, Ser. B, 1966, 163, 492.
Acknowledgements
22] P. Rabe, J. Rinkel, E. Dolja, T. Schmitz, B. Nubbemeyer, T. H. Luu, J. S.
Dickschat, Angew. Chem. Int. Ed. 2017, 56, 2776.
This work was funded by the DFG (DI1536/7-1). We thank
Andreas Schneider for HPLC purifications.
This article is protected by copyright. All rights reserved.