C O M M U N I C A T I O N S
structures with semiconductive π-systems. We are currently explor-
ing the scope of this assembly in terms of the π-conjugated amino
acids and the bioactive peptide sequences used during SPPS, as
well as the environmental conditions required to initiate assembly.
Understanding how these variables impact supramolecular associa-
tion will allow us to engineer and evaluate numerous biologically
relevant and electronically functional nanostructures in a rapid
manner.
Acknowledgment. We thank Johns Hopkins University for
financial support and Prof. D. H. Fairbrother for generous AFM
use. We thank M. Cline (Toscano Laboratory) and Dr. J. M.
McCaffery for instrumental assistance and G. Vadehra for early
synthetic assistance. S.R.D. acknowledges support from the NSF
as an IGERT Fellow through JHU’s Institute for NanoBioTech-
nology.
Figure 2. Energy-minimized illustration of ꢀ-sheets and π-stacks as line
drawings and space-filling models (left, thiophenes in yellow) and the helical
twist sense along a model aggregate (center, hydrogens omitted).
gregates require blue-shifted absorptions, the lower oscillator
strength of 2 may have led to less-pronounced effects. The natural
propensities for ꢀ-sheets to adopt macromolecular twists would also
dictate twisted H-aggregates.10 Although X-ray diffraction was
inconclusive, the photophysics associated with the spectroscopic
behavior above lead us to conclude that the bithiophene π-systems
intimately associate within a twisted chiral environment imposed
by ꢀ-sheet interactions throughout the assembled structure.
Atomic force microscopy (AFM) of gel samples deposited on
mica revealed 1-D nanostructures with heights ranging from 2 to 6
nm (Figure 1C,D). Given that 2 is ca. 42 Å in length, these objects
are consistent with coiled tape-like or even more complex fibrillar
structures, early thermodynamic sinks on the assembly energy
landscape that spans from free molecule to large amyloid-like fiber.
The rigidity of these structures is evident in the larger height profiles
near crossover junctions. In some cases we resolved 1-D structures
resting over a monolayer of flat tapes passivating the mica surface
(ca. 1 nm in height) attributed to strong interactions between flat
tapes and the highly polar mica surface.8,11 The influence of the
backbone-embedded quadrupole moment of the π-cloud must play
a role in affecting peptide-surface interactions: nanostructures
deposited on nonpolar substrates did not show any evidence for
monolayer passivation.8
Supporting Information Available: Experimental details, charac-
terization data, and additional microscopy. This material is available
References
(1) (a) Schoonbeek, F. S.; van Esch, J. H.; Wegewijs, B.; Rep, D. B. A.; de
Haas, M. P.; Klapwijk, T. M.; Kellogg, R. M.; Feringa, B. L. Angew. Chem.,
Int. Ed. 1999, 38, 1393–1397. (b) Hill, J. P.; Jin, W. S.; Kosaka, A.;
Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii,
N.; Aida, T. Science 2004, 304, 1481–1483. (c) Leclere, P.; Surin, M.;
Viville, P.; Lazzaroni, R.; Kilbinger, A. F. M.; Henze, O.; Feast, W. J.;
Cavallini, M.; Biscarini, F.; Schenning, A. P. H. J.; Meijer, E. W. Chem.
Mater. 2004, 16, 4452–4466. (d) Hoeben, F. J. M.; Jonkheijm, P.; Meijer,
E. W.; Schenning, A. P. H. J. Chem. ReV. 2005, 105, 1491–1546. (e) Jahnke,
E.; Lieberwirth, I.; Severin, N.; Rabe, J. P.; Frauenrath, H. Angew. Chem.,
Int. Ed. 2006, 45, 5383–5386. (f) Li, X. Q.; Stepanenko, V.; Chen, Z. J.;
Prins, P.; Siebbeles, L. D. A.; Wu¨rthner, F. Chem. Commun. 2006, n/a,
3871–3873. (g) Che, Y. K.; Datar, A.; Balakrishnan, K.; Zang, L. J. Am.
Chem. Soc. 2007, 129, 7234–7235. (h) Ryu, J.-H.; Hong, D.-J.; Lee, M.
Chem. Commun. 2008, n/a, 1043–1054.
(2) (a) Wang, Q.; Lin, T. W.; Tang, L.; Johnson, J. E.; Finn, M. G. Angew.
Chem., Int. Ed. 2002, 41, 459–462. (b) Kas, O. Y.; Charati, M. B.; Kiick,
K. L.; Galvin, M. E. Chem. Mater. 2006, 18, 4238–4245.
(3) (a) Lahann, J.; Mitragotri, S.; Tran, T. N.; Kaido, H.; Sundaram, J.; Choi,
I. S.; Hoffer, S.; Somorjai, G. A.; Langer, R. Science 2003, 299, 371–374.
(b) Langer, R. MRS Bull. 2006, 31, 477–485.
Our working model (Figure 2) starts with the formation of
ꢀ-sheets yielding twisted ribbon 1-D structures (akin to telephone
cords) with the same handedness as natural ꢀ-sheets. We expect
the more favorable antiparallel configuration shown at left but
cannot unambiguously determine this from the data at hand. These
structures can adsorb directly on the surface or they can aggregate
with other tapes into larger fibrils as do other synthetic amyloid
peptides. Regardless, the directionality of the hydrogen-bonding
network coincides with the π-stacking axis with a calculated
intermolecular π-π distance of ca. 5 Å. This relatively long
distance still enables electronic communication as discussed above
and as witnessed by energy transfer among isolated chromophores
within R-helical and ꢀ-sheet peptides.2b,12 The AFM images reveal
superstructural undulations with periodicities of ca. 76 nm (Figure
1D) as found in the right- and left-handed helical superstructures
within natural amyloid sequences.8,13 We also acknowledge
prospects for “molecular torque” caused by competing thermody-
namic preferences to maximize ꢀ-sheet hydrogen bonding and
minimize electrostatic repulsion among the bithiophene π-clouds,14
a subject of continued inquiry.
(4) (a) Klok, H. A.; Ro¨sler, A.; Go¨tz, G.; Mena-Osteritz, E.; Ba¨uerle, P. Org.
Biomol. Chem. 2004, 2, 3541–3544. (b) Kong, X.; Jenekhe, S. A.
Macromolecules 2004, 37, 8180–8183. (c) Ashkenasy, N.; Horne, W. S.;
Ghadiri, M. R. Small 2006, 2, 99–102.
(5) (a) Schmidt, C. E.; Shastri, V. R.; Vacanti, J. P.; Langer, R. Proc. Natl.
Acad. Sci. U.S.A. 1997, 94, 8948–8953. (b) Wallace, G.; Spinks, G. Soft
Matter 2007, 3, 665–671.
(6) (a) Lashuel, H. A.; LaBrenz, S. R.; Woo, L.; Serpell, L. C.; Kelly, J. W.
J. Am. Chem. Soc. 2000, 122, 5262–5277. (b) MacPhee, C. E.; Dobson,
C. M. J. Am. Chem. Soc. 2000, 122, 12707–12713.
(7) (a) Zhang, S. G.; Holmes, T.; Lockshin, C.; Rich, A. Proc. Nat. Acad.
Sci.U.S.A. 1993, 90, 3334–3338. (b) Collier, J. H.; Messersmith, P. B. AdV.
Mater. 2004, 16, 907–910. (c) Haines, L. A.; Rajagopal, K.; Ozbas, B.;
Salick, D. A.; Pochan, D. J.; Schneider, J. P. J. Am. Chem. Soc. 2005, 127,
17025–17029. (d) Smeenk, J. M.; Otten, M. B. J.; Thies, J.; Tirrell, D. A.;
Stunnenberg, H. G.; van Hest, J. C. M. Angew. Chem., Int. Ed. 2005, 44,
19681971.7. (e) Davies, R. P. W.; Aggeli, A.; Beevers, A. J.; Boden, N.;
Carrick, L. M.; Fishwick, C. W. G.; McLeish, T. C. B.; Nyrkova, I.;
Semenov, A. N. Supramol. Chem. 2006, 18, 435–443.
(8) See the Supporting Information.
(9) (a) Wang, W.; Wan, W.; Zhou, H. H.; Niu, S. Q.; Li, A. D. Q. J. Am.
Chem. Soc. 2003, 125, 5248–5249. (b) Gothard, C. M.; Rao, N. A.; Nowick,
J. S. J. Am. Chem. Soc. 2007, 129, 7272–7273.
(10) (a) Cornil, J.; dos Santos, D. A.; Crispin, X.; Silbey, R.; Bredas, J. L. J. Am.
Chem. Soc. 1998, 120, 1289–1299. (b) Schenning, A.; Jonkheijm, P.;
Peeters, E.; Meijer, E. W. J. Am. Chem. Soc. 2001, 123, 409–416.
(11) Whitehouse, C.; Fang, J. Y.; Aggeli, A.; Bell, M.; Brydson, R.; Fishwick,
C. W. G.; Henderson, J. R.; Knobler, C. M.; Owens, R. W.; Thomson,
N. H.; Smith, D. A.; Boden, N. Angew. Chem., Int. Ed. 2005, 44, 1965–
1968.
In conclusion, we report a new class of peptides bearing internal
π-conjugated segments that can be manipulated and assembled into
1-D nanostructures in completely aqueous and physiologically
relevant [Ca2+] environments. The clear photophysical changes
observed upon assembly highlight the strong electronic communica-
tion existing within the amyloidlike aggregates as mediated by
π-stacking among molecular components, a critical component
necessary for charge transport or exciton delocalization in nano-
(12) Kayser, V.; Turton, D. A.; Aggeli, A.; Beevers, A.; Reid, G. D.; Beddard,
G. S. J. Am. Chem. Soc. 2004, 126, 336–343.
(13) (a) Mesquida, P.; Riener, C. K.; MacPhee, C. E.; McKendry, R. A. J. Mater.
Sci. Mater. Med. 2007, 18, 1325–1331. (b) Rubin, N.; Perugia, E.;
Goldschmidt, M.; Fridkin, M.; Addadi, L. J. Am. Chem. Soc. 2008, 130,
4602–4603.
(14) Li, L. S.; Jiang, H. Z.; Messmore, B. W.; Bull, S. R.; Stupp, S. I. Angew.
Chem., Int. Ed. 2007, 46, 5873–5876.
JA805491D
9
J. AM. CHEM. SOC. VOL. 130, NO. 42, 2008 13841